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ML vs OPT

Machine learning (ML) is induction

• (problems, answers) are given for training
• ML learns to give answers in the future

Optimization (OPT) is prescription

• (problems, evaluations) are given, not answers
• OPT finds answers with best evaluations

Learning to optimize (L2O) combines ML and OPT to obtain “better”
solutions “faster”, by learning from records of optimization.
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Classic vs Learned

Classic OPT:

• Experts hand-built algorithms based on theory and experience
For example, Simplex Method and Nesterov Accelerated Gradient Method

• Algorithms are written as iterations in a few lines
• Practitioners pick an algorithm to use

L2O:

• Experts propose L2O templates and training procedures
• Practitioners

• pick an L2O template
• prepare training data
• apply a training procedure
→ obtain a trained algorithm for future problems

• Practitioners are more involved in the design process
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L2O and Neural Networks (NNs)

Many optimization algorithms are similar in form to NNs

xk+1 ← nonlinear
(
linear(xk) + offset

)
, k = 0, 1, . . .

Example: projected gradient iteration for constrained least squares

xk+1 = ProjC(xk −AT (Axk − b))

Difference: in NNs, nonlineark, lineark, and offsetk vary in k

Question: how to design an NN and use deep learning techniques to improve
optimization algorithms?
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NN architecture for L2O

Model-free: fully data driven, train an input-to-solution NN.

• fast inference: fewer layers than classic optimization iterations
• slow training: too many parameters
• inaccurate solutions: poor generalization, not popular

Model-based: modify existing optimization algorithms.
Examples:

• Algorithms unrolling (this tutorial)
• Plug-n-play
• Deep equilibrium or fixed-point network

Survey: Learning to Optimize: A Primer and A Benchmark, arXiv:2103.12828,
to appear in JMLR.
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Remaining of this Tutorial

• AU definition and examples

• Milestones of the LISTA series of work

• Some theory

• Conclusions
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Algorithm Unrolling (AU)

AU consists of two steps

• Pick a classic iteration and unroll it to an NN
• Select a set of NN parameters to learn

LASSO example: assume b = Axtrue + noise; recover xtrue by optimization

xlasso ← minimize
x

1
2∥Ax− b∥2

2 + λ∥x∥1

also known as ℓ1-regularized least-squares and compressed sensing

Iterative soft-thresholding algorithm (ISTA):

xk+1 = ηλα

(
xk − αAT (Axk − b)

)
• convergence requires a proper stepsize α or line search
• the gradient-descent step reduces 1

2∥Ax− b∥2

• the soft-thresholding step ηλα(·) reduces λ∥x∥1

8 / 39



Introduce scalar θ = λα and matrices W1 = αAT and W2 = I − αAT A.

Rewrite ISTA as
xk+1 = ηθ(W1b + W2xk).

Unrolling: introduce θk, W k
1 , W k

2 , k = 0, 1, . . . , as free parameters and re-define

xk+1 = ηθk (W k
1 b + W k

2 xk)

which resembles a DNN:

Once θk, W k
1 , W k

2 are chosen, the algorithm is defined.
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Gregor & LeCun’10: find θk, W k
1 , W k

2 , k = 0, 1, . . . , such that the algorithm
converges very fast for a set of LASSO instances with the same A.

Fix random matrix A, generate a set of sparse xtrue
i , with varying supports, and

bi = Axtrue
i + noisei. Form the training set D = {(xtrue

i , bi)}.

Fix a small K > 0, and train the parameters by applying SGD to

minimize
{θk,W k

1 ,W k
2 }K

k=0

∑
(x∗,b)∈D

∥∥xK(b)− x∗∥∥2
2

,

where xK(b) is the K-layer output of the NN.
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After the NN is trained with K = 16, the test performance is shockingly good:
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The trained NN is called Learned ISTA (LISTA).
LISTA works much better than ISTA at any λ and using a theoretical stepsize.
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The idea was quickly applied to other algorithms (ADMM, PDHG, etc.) and
many applications:

• Image denoising/deblurring/super-resolution/segmentation Zhang and
Ghanem [2018], Li et al. [2020], Wang et al. [2015], Zheng et al. [2015]

• Medical imaging Sun et al. [2016], Adler and Öktem [2018]

• Remote sensing Lohit et al. [2019]

• Wireless Communication Sun et al. [2017], Balatsoukas-Stimming and
Studer [2019], He et al. [2020]

and beyond.
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Application: Super-Resolution

Problem: generate a high-resolution image from a low-resolution image.
Classic: Sparse coding. Yang et al. [2010] (compute a dictionary pair (Dx, Dy)
by bi-level optimization. Dx is low-resolution dictionary, Dy is high-resolution.
Recovery: image → sparse coding → recover with Dy)
Unrolling: Wang et al. [2015] (unroll sparse coding, train end-to-end)

(a) Classic (PSNR1: 30.29
dB)

(b) CNN Dong et al. [2014]
(PSNR: 30.49 dB)

(c) Unrolling (PSNR: 30.86
dB)

Figure: The “butterfly” image upscaled by ×4 times using different methods.

1The PSNR is obtained on “Set 5” in BSD100 data set. The “butterfly” is in Set 5.
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Application: CT Reconstruction
Problem: Recover x from the observation b:

b = Ax + noise,

where A is the Radon transform and the noise is Gaussian.
Classic: Total Variation (TV).
Unrolling: Adler and Öktem [2018]

(a) Classic (TV) (b) CNN Jin et al. [2017] (c) Unrolling

Figure: The “phantom” image recovered by different methods.
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Application: Image deblurring
Problem: recover image x from its blurry observation b:

b = k ∗ x + noise,

where k is an unknown blurring kernel and the noise is Gaussian.

(a) Total variation (b) CNN Nah et al. [2017] (c) Unrolling Li et al. [2020]

Figure: An image from BSD500 recovered by different methods.
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Challenges to address

• Too many parameters to train. Also how to choose K?
A ∈ Rm×n means O(n2K + mnK) parameters, not scalable to large
m, n, K

• Interpretability
Applications such as medical imaging and operations decisions require the
algorithms to be explainable and reliable

• Safeguard for out-of-distribution problems
When applied to unseen data, the performance should be comparable to
classic algorithms
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Reparameter reduction: coupling W1, W2
Assume no noise. If we need xk → xtrue uniformly for all sparse signals, then
simple calculation shows1:

• W k
2 + W k

1 A→ I,
• θk → 0.

Indeed, training confirms the claims:
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Therefore, we enforce
W k

2 = In −W k
1 A,

for all k, yielding the iteration:

xk+1 = ηθk (xk + W k
1 (b−Axk)).

We call it weight coupling (CP).

Parameters
O(n2K + mnK) reduce−→ O(mnK),

significant reduction if m < n (which is often the case).

After this reduction, training also appears to be more stable.
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Support selection (SS)

Inspired by FPC (Hale, Y., Zhang’08) and Iterative Support Detection
(Wang-Y.’09), at each iteration, let the largest few components bypass
soft-thresholding.

If all bypassed nonzeros are true nonzeros, soft-threshold induced bias is
reduced.
Control the number of bypassing components by fraction, a training parameter.

19 / 39



Empirical results

We compare

• LISTA — original
• LISTA-CP — weight coupling
• LISTA-SS — support selection
• LISTA-CPSS — weight coupling & support detection

on normalized MSE (NMSE) in dB:

NMSE(x̂, x∗) = 20 log10 (∥x̂− x∗∥2/∥x∗∥2)

Tests:

• m = 250, n = 500, sparsity s ≈ 50.
• Aij ∼ N (0, 1/

√
m), iid. A is column-normalized.

• Magnitudes were sampled from standard Gaussian.
• Measurement noise levels were measured by signal-to-noise ratio.
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Weight coupling (CP)
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Same final recovery quality.
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Support selection (SS)

Noiseless case (SNR=∞)
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Support selection (SS)

Noisy case (SNR=30)
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Parameter reduction: tie W1 across iterations

Inspired by analysis, let us try using the same W k
1 for all k. Write it as W .

→ Tied LISTA (TiLISTA) iteration:

xk+1 = ηθk (xk − γkW T (Axk − b)).

Parameters:
O(mnK) reduce−→ O(mn + K),

We learn only step sizes {γk}k and thresholds {θk}k.
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TiLISTA Performance
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TiLISTA works even slightly better than LISTA-CPSS
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Mutual Coherence

Coherence or mutual coherence [Donoho and Huo, 2001] of matrix A ∈ Rm×n,
where columns a⊤

i ai = 1, is

max
1≤i ̸=j≤n

|a⊤
i aj |,

which is the max cross-correlation between pairs of columns.

Smaller coherence of A tends to make sparse-signal recovery [Donoho and Elad,
2003] .

Given A with columns a⊤
i ai = 1, mutual coherence between matrices W and

D is

max
1≤i ̸=j≤n

|w⊤
i aj |
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Observation

We scale W such that w⊤
i ai = 1 for i = 1, . . . , n and then measure

max1≤i̸=j≤n |w⊤
i aj | in TiLISTA.
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Good W needs to have small mutual coherence to A.
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Analytic LISTA (ALISTA)

We use this principle to determine W without training [Liu and Chen, 2019] .

Two steps:

1. Compute approximately optimal W̃ :

W̃ ∈ argmin
W ∈Rm×n

∥∥W T A
∥∥2

F
, s.t. (W:,j)T A:,j = 1, ∀j = 1, 2, · · · , n,

which is a convex quadratic program (QP).
2. With W̃ fixed, learn {γk, θk}k from data

Parameters:
O(mn + K) reduce−→ O(K).

Training takes only minutes.
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Numerical evaluation

Noiseless case
(SNR=∞)
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Noisy case
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Numbers of parameters to train

K: number of layers. A has m rows and n columns.

Parameters Training Time Performance
LISTA O(Km2 + Kmn) 1.5 hours LISTA

≪LISTA-CPSS
≈TiLISTA
≈ALISTA

LISTA-CPSS O(Kmn + K) 50 minutes
TiLISTA O(mn + K) 20 minutes
ALISTA O(K) 6 minutes
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Robust ALISTA
Consider ỹ = Ãx + ε with Ã = A + εA. Given Ã and ỹ, recover x. Must
handle varying Ã.

Unroll an algorithm into an NN to generate W̃ for Ã.

Method:

• train an NN (called encoder) with many pairs of (Ã, W̃ )
• train an ALISTA (called decoder) with many (Ã, ỹ, W̃ , x)
• jointly train them with many (Ã, ỹ, W̃ , x)
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Numerical results

Fix an A. Training:

• Non-robust LISTA methods used their W matrices obtained with A.
• Robust ALISTA trained with perturbed A (Gaussian σ = 0.03).

Testing: All methods tested with perturbed A’s (Gaussian σ1, σ2, · · · ≤ 0.03).
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Robust ALISTA is significantly more robust.
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Ada-LISTA [Aberdam et al., 2021]

Instead learning W and using it in

xk+1 = ηθk (xk − γkW T (Axk − b)),

Ada-LISTA learns a symmetric positive semidefinite U and use it in

xk+1 = ηθk (xk − γkAT U(Axk − b)).

This makes AT U(Axk − b) a descent direction of 1
2∥Ax− b∥2

U , so we can use
the latter as a loss function, train without the ground truth.

Motivated by FISTA, Ada-LISTA also adds momentum.
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LISTA Capacity Theory

ALISTA [Liu and Chen, 2019] proves: given low mutual coherence (A, W ) and
any sparse, significant signal x, ∃ parameters such that ALISTA converges
linearly.

The paper also proves a negative result: for any (W k
1 , W k

2 , θk), for sparse x

with uniform-random supports and values, linear convergence is the best rate
w.h.p.

Ada-LISTA [Aberdam et al., 2021] proves [robust linear convergence.]

Step-LISTA 2 provides the necessary condition that the model converges to the
solution of LASSO.
Generalization: [Schnoor et al., 2021, Kouni, 2022, Joukovsky et al., 2021]
analyzed the Rademacher complexity of LISTA and variants.

2[Ablin et al., 2019]
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HyperLISTA [Chen et al., 2021]

Introduce

• a hybrid-thresholding operator to bypass pk largest entries
• analytic formulas for the parameters
• three hyper-parameters subject to grid search

Significance:

• allow the parameters to be “instance optimal”
• proves ∃ parameters to obtain superlinear error reduction
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HyperLISTA learns c1, c2, c3 > 0 and use them to set

θk = c1µ
∥∥A†(Axk − b)

∥∥
1
, soft threshold

βk = c2µ ∥xk∥0, momentum stepsize

pk = c3 min

(
log
(

∥A†b∥1

∥A†(Axk − b)∥1

)
, n

)
, pass-through count

The formulas are motivated by the analysis but use xk instead of xtrue.

Parameters:
O(K) reduce−→ 3.

Training can be done by grid search or a global optimization method.
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HyperLISTA is fast and robust

Good analytic rules have better generalization perf.
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Uncovered LISTA topics

• [Moreau and Bruna, 2017] proposed to understand LISTA by the similarity
between LISTA and a matrix-factorization method.

• [Xin et al., 2016] proposed learned iterative hard-thresholding-CP.

• [Wu et al., 2019] proposed gated mechanisms to improve LISTA.

• [Ito et al., 2019] proposed a minimum mean squared error (MMSE)
estimator-based shrinkage function in LISTA.

• [Yang et al., 2020] proposed to use nonconvex-function-induced
regularizers in LISTA.

• [Heaton et al., 2020] introduced a safeguard wrapper for LISTA methods
applied to structured convex problems.

• When K is large or K =∞, LISTA cannot be trained. Instead, we can
use deep equilibrium[Bai et al., 2019, Winston and Kolter, 2020] and
fixed-point network [Fung et al., 2022]. [Gilton et al., 2021] demonstrated
better image recovery.
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Summary

There is still huge room for optimization speed to improve. Integrating
optimization and ML is a viable approach.

AU integrates data-driven (slow/fast, adaptive) and analytic (fast/slow,
universal) approaches to obtain fast/fast and adaptive algorithms.

Despite the success in sparse coding, much still needs to be advanced and
understood for other AU applications.

Thank you!
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