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Selection of Disease-related Features

@ Disease Prediction vs Feature Selection.

@ Among imaging features X, ..., X, (the sample size n may be less
than p), which features are disease related?

o Example: degenerated gray matter (GM) in Alzheimer's Disease.

Figure: Selecting Atrophied Gray Matter Voxels in Alzheimer's Disease
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Structural Sparsity

Structural Sparsity for diseased gray matter voxels:
O sparsity @ spatial coherence @ positivity (with Y).
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Structural Sparsity

Structural Sparsity for diseased gray matter voxels:
O sparsity @ spatial coherence @ positivity (with Y).

Lasso [Liu'2012]: ming 4(8) + A1 5|1

Elastic Net [Xiao'2021]: ming £(3) + A1]8]1 + X2| 83

Graph Net [Grosenic'2013]: ming £(83) + M1 B]1 + A2| DBJ3.
Generalized Lasso [Xin'2014]: ming £(83) + A1|B]1 + X2| DB|1.
Non-negative Generalized Fused Lasso (n?-GFL) [Xin'2015]:
ming=o ¢(8) + A1[B]1 + A2 DB]1.
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Structural Sparsity

Structural Sparsity for diseased gray matter voxels:
O sparsity @ spatial coherence @ positivity (with Y).

@ Lasso [Liu'2012]: ming 4(B) + A1 5|1

e Elastic Net [Xia0'2021]: ming £(8) + A1]8]11 + X2| B3

o Graph Net [Grosenic'2013]: ming ¢(8) + M1 B]1 + A2|DBJ3.

o Generalized Lasso [Xin'2014]: ming £(83) + A1]B]1 + A2| DB

o Non-negative Generalized Fused Lasso (n?-GFL) [Xin'2015]:
ming>o £(5) + Ax|Bll1 + A2 DB

Limitations. i) Incoherence condition is not easy to satisfy; ii)
Overlook the gap between prediction and feature selection.
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Procedural Bias

@ Enlarged GM voxels in lateral ventricle features.
@ Introduced in the procedure of preprocessing.

@ Prediction — lesion features: helpful for disease prediction.
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Selection of Degenerated Features

Lasso

Elastic Net

Graphnet &
ass )
genlasso g
£ ; ‘ 78 ‘s - v
GSplit LBI e . B B D -
. e b ] e bl G
Model (a) fold 1 (b) fold 3 (c) fold 5 (d) fold 7 (e) fold 9 (f) overlap

Figure: Lesion Features Selection. !

1GSpIit LBI: Taming the Procedural Bias. MICCAI, 2017.
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Procedural Bias

lasso Elastic-Net Graph-Net n?GFL Ours (GSplit LBI)

Figure: Procedural Bias Selection. 2

2GSpIit LBI: Taming the Procedural Bias. MICCAI, 2017.
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Prediction Power

MLDA] SVM | Lasso |Graphnet|Elastic Net|TV + [;[n?GFL|GSplit LBI (8,)
15ADNC |85.06%|83.12%|87.01%| 86.36% 88.31% | 83.77% |86.36% 88.96%
30ADNC (86.93%|87.50%|87.50%| 88.64% 89.20% | 87.50% |87.50% 90.91%
15MCINC|61.41%(70.13%|69.80%| 72.15% 70.13% | 73.83% (69.80% 75.17%

Figure: Results on ADNI. 3

3GSpIit LBI: Taming the Procedural Bias. MICCAI, 2017.
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How do we overcome these limitations and achieve this result?
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Sparse Regression

Considering recovering 8* from following model:
y = Xﬁ* +g,
where X is the design matrix.

Structural Sparsity. v* := Df*, S := supp(v*); |S| « |[row(D)|.
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Sparse Regression

Considering recovering 8* from following model:
y=XB"+e,
where X is the design matrix.
Structural Sparsity. v* := Df*, S := supp(v*); |S| « |[row(D)|.
@ D := /. Pure sparsity.

@ D is wavelet basis. Wavelet smoothing.

@ D is graph laplacian. Image denosing.

How to recover ~v* sparse pattern (sparsisitency) and estimate true
values of * (v*) (consistency)?
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Generalized Lasso (Review)

Generalized lasso (genlasso):

1
in—|ly — XB|2 + \|D
min 2nHy Bl + A DB|1

@ Total Variation (Rudin, et al."1992); Fused Lasso (Tibshirani et
al.’2005); Lasso (Tibshirani'1996).
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Generalized Lasso (Review)

Generalized lasso (genlasso):

1
in—|ly — XB|2 + \|D
min 2nHy Bl + A DB|1

@ Total Variation (Rudin, et al."1992); Fused Lasso (Tibshirani et
al.’2005); Lasso (Tibshirani'1996).

@ Problems of genlasso.

@ Optimizations for several \.
@ Incoherence condition: hard to satisfy (Vaiter et
al.’2013,Zhao et al."2006).
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Structural Sparsity via Differential Inclusion

Structural Sparse Regression:
y =XB* +e,7" = Dp*,|S| « |[row(D)|.
Variable Splitting between DS and ~:
£u(B7) = 5-ly — XBIE + 5105 — 13
2n 2u

Inverse Scale Space via Differential Inclusion

0= _VBLV(Btert)
pt = —Vyﬁu(ﬁt,%)
pt € |vefa
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Differential Inclusion in Inverse Scale Space

Split Bregman Inverse Scale Space (Split Bregman 1SS) #:

0=—-VgL,(Bt,v:) -update of 3;

pt = =V L, (Be,ve) -update of v;
pt € 0| vell1 -update of ¢

@ At each t, (3; is solved directly.

4Split Ibi: an iterative regularization path. NeurlPS, 2016.
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Differential Inclusion in Inverse Scale Space

Split Bregman Inverse Scale Space (Split Bregman 1SS) #:

0=—-VgL,(Bt,v:) -update of 3;

pr = =V, L,(Bt,7:) -update of v;
pt € 0| vell1 -update of ¢

@ At each t, (3; is solved directly.

e p(i) = sign(v(i)) for v(i) # 0; if p(i) € (—1,1) then (i) = 0.
vl alyl

i —

—a

f=11 af =]

4Split Ibi: an iterative regularization path. NeurlPS, 2016.
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Differential Inclusion in Inverse Scale Space

Split Bregman Inverse Scale Space (Split Bregman ISS) °:

0=—VgLy(Bt;vt) -update of 3¢

pr = =V L,(Bt,7:) -update of v
pt € 0||ve1 -update of ~;

@ At each t, (3; is solved directly.

o p(i) = sign(y(i)) for v(i) # 0; if p(i) € (—1,1) then (i) = 0.
@ p: : gradient descent flow, starting from 0.

5Split Ibi: an iterative regularization path. NeurlPS, 2016.
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Differential Inclusion in Inverse Scale Space

Split Bregman Inverse Scale Space (Split Bregman ISS) °:

0=—VgLy(Bt;vt) -update of 3¢

pr = =V L,(Bt,7:) -update of v
pt € 0||ve1 -update of ~;

@ At each t, (3; is solved directly.

o p(i) = sign(y(i)) for v(i) # 0; if p(i) € (—1,1) then (i) = 0.
@ p: : gradient descent flow, starting from 0.

@ p:(i) reaches £1 == ~;(i) # 0 is selected.

5Split Ibi: an iterative regularization path. NeurlPS, 2016.
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Differential Inclusion in Inverse Scale Space

Split Bregman Inverse Scale Space (Split Bregman ISS) °:

0=—VgLy(Bt;vt) -update of 3¢

pr = =V L,(Bt,7:) -update of v
pt € 0||ve1 -update of ~;

At each t, (; is solved directly.

p(i) = sign(v(i)) for v(i) # 0; if p(i) € (—=1,1) then (i) = 0.
pr - gradient descent flow, starting from 0.

pt(i) reaches +1 == ~(i) # 0 is selected.

Regularization Solution Path. t is regularization parameter.

5Split Ibi: an iterative regularization path. NeurlPS, 2016.
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Damped (Linearized) Bregman ISS

o Append 5 |v¢|3 for strongly convexity (with x > 0):

A gl L
22 pot 2 €0 (Il + 5 el3)
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Damped (Linearized) Bregman ISS

o Append 5 |v¢|3 for strongly convexity (with x > 0):

A gl L
22 pot 2 €0 (Il + 5 el3)

@ 7: can be obtained from z;.

Zy
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Damped (Linearized) Bregman ISS

e Append iH%H% for strongly convexity (with x > 0):

A gl L
22 pc+ 2 e 0 (Inuls + -lel3)

@ 7; can be obtained from z;:

vt = kK = sign(z;) © max(|z¢| — 1,0).

Zy
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Damped (Linearized) Bregman ISS

o Append 5 |v:|3 for strongly convexity (with x > 0):

22 pot 2 €0 (Il + 5 el3)
@ 7; can be obtained from z:
vt = K *sign(z;) © max(|z:| — 1,0).
@ Split Linearized Bregman Invserse Scale Space (Split LBISS):
Bt/“ = —VLy(Be,7t)
z = —nyﬁu(ﬁn%)
vt = K # sign(z;) O max(|z:| — 1,0)
e Discretization. Split Linearized Bregman Iteration (Split LBI):
Br+1 = Bk — kaV gL (B, Vi)
Zkr1 = 2k — VA L(Br, Vi)
Yi+1 = k * sign(zk11) © max(|ze11] = 1,0)
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Solution Path

Linear model y = X3* + noise.

|
Signal I Noise

. |
u—
2
w
)
L
g = a
S \
S v
3
(\Il__

15 20 25
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No-False-Positive

Do the early selected features belong to the true signal set?
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Intuition

N
2 facle ,
M Gotimator
’
y Opnele.
/ S

OVves f:\#/}z sw&yj;m.k,

@ Irrespresentable Condition = Loss decay on the oracle space.
@ Restricted Strong Convexity => Unique solution.

@ Early Stopping after picking up the signals.
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Irrepresentable Condition

v in Variable Splitting: relax v* = Dg*.

1 o 1 2
W(B8,7) = —lly — —||DB —~vlf5.
£,(8.7) 1= o= ly — X813 + o |DB 13
Assumption 1 (Irrepresentable Condition).
IRR(v) := H25c75(l/)zgig(l/)”oo <1

The X(v) := (I - DwX*X + DTD)IDT)/v.
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Decollinearity

The angle between (5¢) and (3, S), via H(v) = V2L, (3,7).

. trace(HSCy(ﬂys) (V)H2‘67s)7(675) (V) H(B,S),SC(V))
0557(675) 1= arccos

trace(Hse se(v))

Theorem (Sun-Han-Hu-Yao-Wang'2020)

The lim, o 0%, 6.5 T2 —
ker(X) < ker(Ds).

Ose.(5.9)(v)

0
logii(v)
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Irrepresentable Condition

v in Variable Splitting: relax v* = DS*.

1 1
) = |y — XB|2+ —|DB — |
Ly(B7) = oy = XBlz2 + 5 1D5 =2
Assumption 1 (Irrepresentable Condition).
IRR(v) := |‘25c75(y>25’15(1/)||00 < 1.

The X(v) := (I - DwX*X + D'D)ID")/v.

Theorem (Huang-Sun-Xiong-Yuan' 2016)

o lim,_oIRR(r) = IC (genlasso Vaiter'13).
@ lim,_, IRR(v) exists and = 0 < IC <= ker(X) < ker(Ds).
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Assumptions

v in Variable Splitting: relax v* = DS*.

Lu(B.7) 1= 5y = X8+ - |D8 — 13
Assumption 1 (Irrepresentable Condition).
IRR(v) := H25c75(1/>zgé(l/)“oo <1l
Assumption 2 (Restricted Strongly Convexity).
Y55 > Al, for some A > 0.

The £(v) := (I — D(vX*X + DTD)DT) /.
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Path Consistency

Sparse Estimator [;.

Bt = Ps,(8¢) :=arg _min |5 — x|2.
DscX:O

Theorem (Huang-Sun-Xiong-Yuan'2020)

Under Irrepresentable Condition and Restricted Strongly Convexity,
then there exists T s.t.

@ No-false-positive. supp(y:) € S, for 0 < t < 7.
@ Sign-Consistency. sign(vyz) = sign(~*) if v* is strong.

@ /5 consistency of v;. |y — DB*|2 < O(\/@)'
o /, consistency of 3. |B: — B*[2 < O(\/@)-
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Simulation

Left. IRR(v) vs v and IC.

Right. Split LBI vs genlasso in terms of AUC.

1Co i genlasso Split LBI
. 1 5 10
i, SR I 0 L O S S N (S 9426 .9845 .9969 19982
3 - i (.0390)  (.0185) (.0065) (.0043)
! D=1
: |
N\ genlasso Split LBI
1 5 10
9705 19955 9996 .9998
85 i L n - (.0212)  (.0056) (.0014) (.0009)

D is 1-d fused lasso matrix



Recovering Structural Sparsity via Differential Inclusion
0000000000000000000e00

Explore Beyond Sparsity

Variable Splitting. Dense and Sparse parameter.

1 1
Lo(B.7) = o-lly = XBIE + - |DB =5

o Sparse parameter: /3 := arg mMinpex—o [|8 — x|2.

@ Dense parameter: Explore beyond sparsity.
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Summary

Split Bregman Inverse Scale Space (Split Bregman ISS)

0= _vﬁﬁy(5t7’7t)
pe = _vvﬁu(ﬁta'ﬁ)
pt € 0| vell1

@ A regularization solution path via differential inclusion.
@ More and more variables are selected as iterates.
o Earlier selected features belong to the true signal set.

@ Variable Splitting enables to explore beyond sparsity.
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False-Discovery-Rate (FDR) Control

Piratically, the incoherence is unknown. Then,
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False-Discovery-Rate (FDR) Control

Piratically, the incoherence is unknown. Then,

How to control the FDR?
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© False-Discovery-Rate Control
@ Split Knockoff
@ FDR Smoothing on Heterogeneous Features
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Knockoff (Review) for Pure Sparsity

@ FDR control for pure sparsity. y = X3* + €.

@ Control E [%] <q.
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Knockoff (Review) for Pure Sparsity

@ FDR control for pure sparsity. y = X3* + €.

@ Control E [W]
[S]

Y X
[
||
.
\

@ For each X;, create a knockoff copy X; as a control.

<gq.

& (homogenous)
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Knockoff (Review) for Pure Sparsity

@ FDR control for pure sparsity. y = X3* + €.

@ Control E [W]
[S]

Y X
[
||
.
\

@ For each X;, create a knockoff copy X; as a control.

<gq.

& (homogenous)

@ Implement black-box algorithm to obtain Z; and Z;.
o Z; (Z): the effect of X; on Y (X; on Y).

e For each j, W, := max(Z;, Z) * sign(Z; — Z;).
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Knockoff (Review) for Pure Sparsity

e For each j, W, := max(Z;, Z)) * sign(Z; — Z;).
e For non-null: W; > 0 and is large.

o For null: P(W; > 0) =1/2, i.e., comparable with its copy.

exchangeable

| |
(Z17227ZZ$7'"5Zpa217227235"'7Zp)
| |

exchangeable

Figure: Null Statistics are pairwise exchangeable.
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Knockoff (Review) for Pure Sparsity

@ Knockoff selects features that are clearly better than their copies.

Knockoff

w<o0

w>0

@ Knockoff selects § := {i:W;>Tg}, Tqg :=ming {%}
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Knockoff (Review) for Pure Sparsity

@ Knockoff selects features that are clearly better than their copies.

Knockoff

w<o0

w>0

@ Knockoff selects § := {i:W;>Tg}, Tqg :=ming {%}

Theorem (R.Barbers and Candés'15)
Given any desired level g > 0, knockoff has FDR < q.
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Heterogeneous Noise for Structural Sparsity

Structural sparsity: y = Xf* + ¢, v* = D* (D € R™*P) is sparse.
@ If rank(D) = m, we have y = XDTy*(= %) +¢.
@ For m > p or rank(D) < m, § = Xgf* + X, 7* + ¢

v Z Onsxim =
= ()-8 )= ) 2= (50)
m Vv N2 m
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Heterogeneous Noise for Structural Sparsity
Structural sparsity: y = Xf* + ¢, v* = D* (D € R™*P) is sparse.

@ If rank(D) = m, we have y = XDTy*(= B*) + ¢.
@ For m > p or rank(D) < m, § = Xgf* + X, 7* + ¢

Xy Xy & (heterogenous)
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Exchangeability Fails

@ For each X, (j), construct a copy X, (j).
@ Z:=sup{\:7;(\) # 0}, Z; := sup{\ : %;(\) # 0}.

1
Y(A) i= argmin 5|7 — X5 B(A) — X + Ayl

N N o~ .
F(A) = argmin Sy = X5 5(A) — XA + Al

e,

(a) Knockoff (b) Split Knockoff

Figure: For null j, P(W; < 0) > P(W; > 0).
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Split Knockoff (Truncations)

Knockolf with Lasso Statistic 10 Split Knockoff with Lasso Statistic

05g% e
Value of Z, Value of Z, 100
(a) Knockoff (b) Split Knockoff

Solution (Truncation). Given {Z;};,{Z;};, we define

W, = Z; s sign(Z; — 2+ 101 = 7).

where r; = lim;_,z_ sign(v;(t)) and 7 = lim,_,5_ sign(%;(t)).
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Null Statistics W; are not Independent

We look at the KKT condition:

Ap(A) + 7(:\) = %(/\) (determined by & := X;g),
Ni) + T PO oy % 0e i)

¢

Condition on & := X;E, P(W; > 0) = P(¢; < 0). Besides,

E[¢] = 0, Var[¢] = M/m;

n

2 _ 2
B[cle] 20, Varfclg] = T2,
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Solution: Data Splitting

We can split the dataset into D = Dy u D;:
@ (()) is obtained from Dy;

° ZNZJ are obtained from D>.

Ap(A) + 7Y = D) (determined by & := XTEI),
v v ny
iy + TV _ DAY

Then, P(W; > 0) = P(¢; < 0) with

02(2s — vs?)

n

E[¢] =0, Var[(] = L.
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Theoretical Analysis

Theorem (FDR Control of Split Knockoff)
For any g > 0, we have FDR < gq.

Simulation Experiments ©:

1 1

——FDR for SK ——FDR for SK

—FDRforsK
Pouer for SK Power for SK . Powerfor SK
08 —FoRforske | 08 ——FoRforske 087 |——FDR for S+
Pover for SK+ Power for SK+ Power for SK+
0.6 0.6 0.6
04 0.4 0.4
02— — e e 02 —

0 : 0 : 0 :
002040608 1 12141618 2 0 02040608 1 12141618 2 0 02040608 1 12141618 2
og(v) log(v) log(v)

Dy =1, D, is 1-d fused lasso D3 = [Dy; D,]

6Controlling the False Discovery Rate in Transformational Sparsity: Split
Knockoffs.
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Alzheimer's Disease
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Knockoff requires n > m + p.

In high-dimensional analysis, the power is limited due to
multi-collinearity problem.
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From p = 2,527 voxels to p = 20,091.

Accuracy of Split LBI: Vg (90.91%) vs V4 (89.77%).
o Vg: 2,527 voxels with 8 x 8 x 8mm3.
o V4: 20,091 voxels with 4 x 4 x 4mm3.

The performance drops with even more features!

GSplit LBI  FDR-HS
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How do we alleviate this problem and improve emprical utility?
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Hypothesis Testing

SRl = A ST (ki) — K2
1,i 2/
\

° 7'LO ~ Jni+n,—2- We obtain Pi-
° Cannot control FDR.

@ Two-sample T-test: t; =

@ Benjamini-Hochberg Procedure [Bajamini'1995]: first rank py, ..., py
in an ascending order p(y), ..., p(n) and selects {i : i < k} in which
k= max{i: p; < 2}

e Too conservative in feature selection.
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Local FDR

The [Efron'2001] proposed LocalFDR, an Empirical-Bayes Method:

f(z) = pofo(z) + (1 — po)fi(z), where

@ po denotes the prior of being null;

e fy(z), f1(z) denote the p.d.f of null and non-null groups.

We have: fdr(z) := p(i is null |z) = poff(oz()z), where

e Central Matching to estimate fy(z), po;

o Kernel density to estimate f(z).

Limitation: does not consider spatial coherence!
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FDR Smoothing

The [Tansey'2014] considers:
f(z) = pofo(z) + (1 = po)f1(2) = f(2) = (1 - ¢i)fo(2) + cifi(2),
where ¢; := sigmoid(;). We optimize:

((B) + AIDB1,

where £(8) := — 3\ 1|°g(1f;§)<;6(iﬁ),-)f1(zi)+1+e+p(6;)f°(z")>
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Heterogeneous Smoothing

Note: The procedural bias and lesions are heterogeneous:
@ Procedural bias is enlarged; lesions are atrophied.

o Different degree of spatial coherence.
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Heterogeneous Smoothing

We split G := Gpro U Gies U Gint, With
@ Gpro = (Vpros Epro), Vpro = {i 1 21 < 0}, Epro = {(i,j) € E : zj,z; < 0};
@ Gies = (Vles, Eies), Vies = {i : zi > 0}, Eies = {(i,j) € E : zj,zj > 0};
@ Gint = (Vint, Eint), Vies = Vpro U Ve, Eint = {(i,j) € E : z: < 0,z > 0}.

We turn to optimize:
E(ﬂ) + Aprol‘DGproﬂHI + )\lesHD(ﬁesﬁHl + Aint HDG;m,ﬂ

with DB(i,j) = Bi — B; for (i,j) € ET.

1,

"FDR-HS: An Empirical Bayesian Identification of Heterogenous Features in
Neuroimage Analysis. MICCAI, 2018
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Optimization

The loss is not convex, hence we introduce

. 1 ifz~f(2)
"0 ifz~ fy(2)

The loss is the modified as:

N
((B,s) = > {log (1+exp(B) — sif3i},

i=1
g(B,s) :=L(B,5) + Aprol Da,.. Bll1 + Mes| Dai Bll1 + Aint | D, B1-

We implement Expectation-Maximization (EM) to optimize 3 and z.

SFDR-HS: An Empirical Bayesian Identification of Heterogeneous Features in
Neuroimage Analysis. MICCAI, 2018
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Feature Selection

After estimating 5, fo(z), fi(z), we selects feature with

(1-3&)f(z)

p(si = 0|z, Bj) = ¢if(z)+ (1 —¢&)f(z

] < 7 (& = sigmoid(f;)) .

The v € (0,1) is a pre-setting threshold hyper-parameter.
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Results on ADNI

Table 1. Comparison between FDR-HS and others on 10-fold classification result

Univariate + ElasticNet Multivariate

T-test | BHy [4] | LocalFDR [7] | FDR-HS | GSplit LBI [12] | Elastic Net [16]
15ADNC |89.61% | 89.61% |87.01% 90.26% | 85.06% 87.01%
15MCINC | 70.50% | 71.00% | 73.50% 75.00% | 72.50% 72.00%
30ADNC | 88.64% | 89.77% | 89.77% 91.48% | 89.77% 88.07%
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Feature Selection on ADNI

locaFDR  FDR-HS GSplit LBI

Table 2. Comparison between FDR-HS and others on stability (measured by mDC)

T-test | BH, |LocalFDR | FDR-HS | GSplit LBI
mDC™) (Lesion features) | 0.6705 | 0.6248 | 0.6698 0.6842 | 0.4598
mDC(™) (Procedural Bias) | 0.6267 | 0.5541 | 0.5127 0.6540 |0.3033

K| N, St(k
mDC := M7 S* (k) : selected lesions and procedural bias.

S 1St (k)|
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Thank You!

sunxinwei@fudan.edu.cn
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