Structural Sparsity in Medical Imaging

Xinwei Sun

School of Data Science, Fudan University

June 7, 2022

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

1 Structural Sparsity in Medical Imaging

2 Recovering Structural Sparsity via Differential Inclusion

3 False-Discovery-Rate Control

- Split Knockoff
- FDR Smoothing on Heterogeneous Features

Outline

1 Structural Sparsity in Medical Imaging

2 Recovering Structural Sparsity via Differential Inclusion

False-Discovery-Rate Control Split Knockoff

• FDR Smoothing on Heterogeneous Features

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Selection of Disease-related Features

- Disease Prediction vs Feature Selection.
- Among imaging features $X_1, ..., X_p$ (the sample size *n* may be less than *p*), which features are disease related?
- Example: degenerated gray matter (GM) in Alzheimer's Disease.

Figure: Selecting Atrophied Gray Matter Voxels in Alzheimer's Disease

 Structural Sparsity in Medical Imaging
 Recovering Structural Sparsity via Differential Inclusion
 False-Discovery-Rate Control

Structural Sparsity

Structural Sparsity for diseased gray matter voxels:
sparsity ② spatial coherence ③ positivity (with Y).

Structural Sparsity

Structural Sparsity for diseased gray matter voxels:

- **(**) sparsity **(**) spatial coherence **(**) positivity (with Y).
 - Lasso [Liu'2012]: $\min_{\beta} \ell(\beta) + \lambda_1 \|\beta\|_1$.

Structural Sparsity

Structural Sparsity for diseased gray matter voxels:

- **(**) sparsity **(**) spatial coherence **(**) positivity (with Y).
 - Lasso [Liu'2012]: $\min_{\beta} \ell(\beta) + \lambda_1 \|\beta\|_1$.
 - Elastic Net [Xiao'2021]: $\min_{\beta} \ell(\beta) + \lambda_1 \|\beta\|_1 + \lambda_2 \|\beta\|_2^2$.

Structural Sparsity

Structural Sparsity for diseased gray matter voxels:

- **(**) sparsity **(**) spatial coherence **(**) positivity (with Y).
 - Lasso [Liu'2012]: $\min_{\beta} \ell(\beta) + \lambda_1 \|\beta\|_1$.
 - Elastic Net [Xiao'2021]: $\min_{\beta} \ell(\beta) + \lambda_1 \|\beta\|_1 + \lambda_2 \|\beta\|_2^2$.
 - Graph Net [Grosenic'2013]: $\min_{\beta} \ell(\beta) + \lambda_1 \|\beta\|_1 + \lambda_2 \|D\beta\|_2^2$.

Structural Sparsity

Structural Sparsity for diseased gray matter voxels:

- **(**) sparsity **(**) spatial coherence **(**) positivity (with Y).
 - Lasso [Liu'2012]: $\min_{\beta} \ell(\beta) + \lambda_1 \|\beta\|_1$.
 - Elastic Net [Xiao'2021]: $\min_{\beta} \ell(\beta) + \lambda_1 \|\beta\|_1 + \lambda_2 \|\beta\|_2^2$.
 - Graph Net [Grosenic'2013]: $\min_{\beta} \ell(\beta) + \lambda_1 \|\beta\|_1 + \lambda_2 \|D\beta\|_2^2$.
 - Generalized Lasso [Xin'2014]: $\min_{\beta} \ell(\beta) + \lambda_1 \|\beta\|_1 + \lambda_2 \|D\beta\|_1$.

A D N A 目 N A E N A E N A B N A C N

Structural Sparsity

Structural Sparsity for diseased gray matter voxels:

- **(**) sparsity **(**) spatial coherence **(**) positivity (with Y).
 - Lasso [Liu'2012]: $\min_{\beta} \ell(\beta) + \lambda_1 \|\beta\|_1$.
 - Elastic Net [Xiao'2021]: $\min_{\beta} \ell(\beta) + \lambda_1 \|\beta\|_1 + \lambda_2 \|\beta\|_2^2$.
 - Graph Net [Grosenic'2013]: $\min_{\beta} \ell(\beta) + \lambda_1 \|\beta\|_1 + \lambda_2 \|D\beta\|_2^2$.
 - Generalized Lasso [Xin'2014]: $\min_{\beta} \ell(\beta) + \lambda_1 \|\beta\|_1 + \lambda_2 \|D\beta\|_1$.
 - Non-negative Generalized Fused Lasso (*n*²-GFL) [Xin'2015]: $\min_{\beta>0} \ell(\beta) + \lambda_1 \|\beta\|_1 + \lambda_2 \|D\beta\|_1.$

Structural Sparsity

Structural Sparsity for diseased gray matter voxels:

- **(**) sparsity **(**) spatial coherence **(**) positivity (with Y).
 - Lasso [Liu'2012]: $\min_{\beta} \ell(\beta) + \lambda_1 \|\beta\|_1$.
 - Elastic Net [Xiao'2021]: $\min_{\beta} \ell(\beta) + \lambda_1 \|\beta\|_1 + \lambda_2 \|\beta\|_2^2$.
 - Graph Net [Grosenic'2013]: $\min_{\beta} \ell(\beta) + \lambda_1 \|\beta\|_1 + \lambda_2 \|D\beta\|_2^2$.
 - Generalized Lasso [Xin'2014]: $\min_{\beta} \ell(\beta) + \lambda_1 \|\beta\|_1 + \lambda_2 \|D\beta\|_1$.
 - Non-negative Generalized Fused Lasso (*n*²-GFL) [Xin'2015]: $\min_{\beta>0} \ell(\beta) + \lambda_1 \|\beta\|_1 + \lambda_2 \|D\beta\|_1.$

Limitations. i) Incoherence condition is not easy to satisfy; ii) Overlook the gap between prediction and feature selection.

Procedural Bias

- Enlarged GM voxels in lateral ventricle features.
- Introduced in the procedure of preprocessing.
- Prediction lesion features: helpful for disease prediction.

Structural Sparsity in Medical Imaging Recovering Structural Sparsity via Differential Inclusion False-Discovery-Rate Control

Selection of Degenerated Features

Figure: Lesion Features Selection.¹

¹GSplit LBI: Taming the Procedural Bias. MICCAI, 2017. э Structural Sparsity in Medical Imaging

Recovering Structural Sparsity via Differential Inclusion False-Discovery-Rate Control

Procedural Bias

Figure: Procedural Bias Selection.²

 Structural Sparsity in Medical Imaging 00000000
 Recovering Structural Sparsity via Differential Inclusion
 False-Discovery-Rate Control

Prediction Power

	MLDA	SVM	Lasso	Graphnet	Elastic Net	$TV + l_1$	$n^2 \text{GFL}$	GSplit LBI (β_{pre})
15ADNC	85.06%	83.12%	87.01%	86.36%	88.31%	83.77%	86.36%	88.96%
30ADNC	86.93%	87.50%	87.50%	88.64%	89.20%	87.50%	87.50%	90.91%
15MCINC	61.41%	70.13%	69.80%	72.15%	70.13%	73.83%	69.80%	75.17%

Figure: Results on ADNI.³

³GSplit LBI: Taming the Procedural Bias. MICCAI, 2017. (♂) (目) (目) (目)

How do we overcome these limitations and achieve this result?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline

Structural Sparsity in Medical Imaging

2 Recovering Structural Sparsity via Differential Inclusion

False-Discovery-Rate Control Split Knockoff

• FDR Smoothing on Heterogeneous Features

Sparse Regression

Considering recovering β^* from following model:

$$y = X\beta^{\star} + \varepsilon,$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

where X is the design matrix.

Structural Sparsity. $\gamma^{\star} := D\beta^{\star}, S := \operatorname{supp}(\gamma^{\star}); |S| \ll |\operatorname{row}(D)|.$

Sparse Regression

Considering recovering β^* from following model:

$$y = X\beta^{\star} + \varepsilon,$$

where X is the design matrix.

Structural Sparsity. $\gamma^{\star} := D\beta^{\star}, S := \operatorname{supp}(\gamma^{\star}); |S| \ll |\operatorname{row}(D)|.$

- D := I. Pure sparsity.
- *D* is wavelet basis. Wavelet smoothing.
- D is graph laplacian. Image denosing.

Sparse Regression

Considering recovering β^* from following model:

$$y = X\beta^{\star} + \varepsilon,$$

where X is the design matrix.

Structural Sparsity. $\gamma^{\star} := D\beta^{\star}, S := \operatorname{supp}(\gamma^{\star}); |S| \ll |\operatorname{row}(D)|.$

• D := I. Pure sparsity.

• *D* is wavelet basis. Wavelet smoothing.

• D is graph laplacian. Image denosing.

How to recover γ^* sparse pattern (sparsisitency) and estimate true values of β^* (γ^*) (consistency)?

Generalized Lasso (Review)

Generalized lasso (genlasso):

$$\min_{\beta} \frac{1}{2n} \|y - X\beta\|_2^2 + \lambda \|D\beta\|_1$$

Total Variation (Rudin, et al.'1992); Fused Lasso (Tibshirani et al.'2005); Lasso (Tibshirani'1996).

Generalized Lasso (Review)

Generalized lasso (genlasso):

$$\min_{\beta} \frac{1}{2n} \|y - X\beta\|_2^2 + \lambda \|D\beta\|_1$$

- Total Variation (Rudin, et al.'1992); Fused Lasso (Tibshirani et al.'2005); Lasso (Tibshirani'1996).
- Problems of genlasso.
 - Optimizations for several λ .
 - Incoherence condition: hard to satisfy (Vaiter et al.'2013,Zhao et al.'2006).

Structural Sparsity via Differential Inclusion

Structural Sparse Regression:

$$y = X\beta^{\star} + \varepsilon, \gamma^{\star} = D\beta^{\star}, |S| \ll |\operatorname{row}(D)|.$$

Variable Splitting between $D\beta$ and γ :

$$\mathcal{L}_{\nu}(\beta,\gamma) := \frac{1}{2n} \|y - X\beta\|_{2}^{2} + \frac{1}{2\nu} \|D\beta - \gamma\|_{2}^{2}$$

Inverse Scale Space via Differential Inclusion

$$0 = -\nabla_{\beta} \mathcal{L}_{\nu}(\beta_{t}, \gamma_{t})$$
$$\dot{\rho}_{t} = -\nabla_{\gamma} \mathcal{L}_{\nu}(\beta_{t}, \gamma_{t})$$
$$\rho_{t} \in \partial \|\gamma_{t}\|_{1}$$

Split Bregman Inverse Scale Space (Split Bregman ISS) ⁴:

$$\begin{split} \mathbf{0} &= -\nabla_{\beta} \mathcal{L}_{\nu}(\beta_{t}, \gamma_{t}) & \text{-update of } \beta_{t} \\ \dot{\rho}_{t} &= -\nabla_{\gamma} \mathcal{L}_{\nu}(\beta_{t}, \gamma_{t}) & \text{-update of } \gamma_{t} \\ \rho_{t} &\in \partial \|\gamma_{t}\|_{1} & \text{-update of } \gamma_{t} \end{split}$$

• At each t, β_t is solved directly.

⁴Split Ibi: an iterative regularization path. NeurIPS, 2016. 🖅 🗧 🖉 🔍

Split Bregman Inverse Scale Space (Split Bregman ISS) ⁴:

$$\begin{split} \mathbf{0} &= -\nabla_{\beta} \mathcal{L}_{\nu}(\beta_{t}, \gamma_{t}) & -\text{update of } \beta_{t} \\ \dot{\rho}_{t} &= -\nabla_{\gamma} \mathcal{L}_{\nu}(\beta_{t}, \gamma_{t}) & -\text{update of } \gamma_{t} \\ \rho_{t} &\in \partial \|\gamma_{t}\|_{1} & -\text{update of } \gamma_{t} \end{split}$$

• At each
$$t$$
, β_t is solved directly.

• $\rho(i) = \operatorname{sign}(\gamma(i))$ for $\gamma(i) \neq 0$; if $\rho(i) \in (-1, 1)$ then $\gamma(i) = 0$.

⁴Split Ibi: an iterative regularization path. NeurIPS, 2016. () () () () ()

Split Bregman Inverse Scale Space (Split Bregman ISS) ⁵:

$$\begin{split} \mathbf{0} &= -\nabla_{\beta} \mathcal{L}_{\nu}(\beta_{t}, \gamma_{t}) & \text{-update of } \beta_{t} \\ \dot{\rho}_{t} &= -\nabla_{\gamma} \mathcal{L}_{\nu}(\beta_{t}, \gamma_{t}) & \text{-update of } \gamma_{t} \\ \rho_{t} \in \partial \|\gamma_{t}\|_{1} & \text{-update of } \gamma_{t} \end{split}$$

- At each t, β_t is solved directly.
- $\rho(i) = \operatorname{sign}(\gamma(i))$ for $\gamma(i) \neq 0$; if $\rho(i) \in (-1, 1)$ then $\gamma(i) = 0$.
- ρ_t : gradient descent flow, starting from 0.

⁵Split Ibi: an iterative regularization path. NeurIPS, 2016. 🖅 👘 👘 👘 🛬 🖉 🔊

Split Bregman Inverse Scale Space (Split Bregman ISS) ⁵:

$$\begin{split} \mathbf{0} &= -\nabla_{\beta} \mathcal{L}_{\nu}(\beta_{t}, \gamma_{t}) & \text{-update of } \beta_{t} \\ \dot{\rho}_{t} &= -\nabla_{\gamma} \mathcal{L}_{\nu}(\beta_{t}, \gamma_{t}) & \text{-update of } \gamma_{t} \\ \rho_{t} \in \partial \|\gamma_{t}\|_{1} & \text{-update of } \gamma_{t} \end{split}$$

- At each t, β_t is solved directly.
- $\rho(i) = \operatorname{sign}(\gamma(i))$ for $\gamma(i) \neq 0$; if $\rho(i) \in (-1, 1)$ then $\gamma(i) = 0$.
- ρ_t : gradient descent flow, starting from 0.
- $\rho_t(i)$ reaches $\pm 1 \implies \gamma_t(i) \neq 0$ is selected.

⁵Split Ibi: an iterative regularization path. NeurIPS, 2016. 🖅 👘 👘 👘 🛬 🖉 🔊

Split Bregman Inverse Scale Space (Split Bregman ISS) ⁵:

$$\begin{split} \mathbf{0} &= -\nabla_{\beta} \mathcal{L}_{\nu}(\beta_{t}, \gamma_{t}) & \text{-update of } \beta_{t} \\ \dot{\rho}_{t} &= -\nabla_{\gamma} \mathcal{L}_{\nu}(\beta_{t}, \gamma_{t}) & \text{-update of } \gamma_{t} \\ \rho_{t} \in \partial \|\gamma_{t}\|_{1} & \text{-update of } \gamma_{t} \end{split}$$

- At each t, β_t is solved directly.
- $\rho(i) = \operatorname{sign}(\gamma(i))$ for $\gamma(i) \neq 0$; if $\rho(i) \in (-1, 1)$ then $\gamma(i) = 0$.
- ρ_t : gradient descent flow, starting from 0.
- $\rho_t(i)$ reaches $\pm 1 \implies \gamma_t(i) \neq 0$ is selected.
- Regularization Solution Path. *t* is regularization parameter.

Damped (Linearized) Bregman ISS

• Append $\frac{1}{2\kappa} \|\gamma_t\|_2^2$ for strongly convexity (with $\kappa > 0$):

$$z_t \stackrel{\Delta}{=} \rho_t + \frac{\gamma_t}{\kappa} \in \partial \left(\|\gamma_t\|_1 + \frac{1}{2\kappa} \|\gamma_t\|_2^2 \right)$$

Damped (Linearized) Bregman ISS

• Append $\frac{1}{2\kappa} \|\gamma_t\|_2^2$ for strongly convexity (with $\kappa > 0$):

$$z_t \triangleq \rho_t + \frac{\gamma_t}{\kappa} \in \partial \left(\|\gamma_t\|_1 + \frac{1}{2\kappa} \|\gamma_t\|_2^2 \right)$$

• γ_t can be obtained from z_t .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Damped (Linearized) Bregman ISS

• Append $\frac{1}{2\kappa} \|\gamma_t\|_2^2$ for strongly convexity (with $\kappa > 0$):

$$z_t \stackrel{\Delta}{=} \rho_t + \frac{\gamma_t}{\kappa} \in \partial \left(\|\gamma_t\|_1 + \frac{1}{2\kappa} \|\gamma_t\|_2^2 \right)$$

• γ_t can be obtained from z_t :

$$\gamma_t = \kappa * \operatorname{sign}(z_t) \odot \max(|z_t| - 1, 0).$$

Damped (Linearized) Bregman ISS

• Append $\frac{1}{2\kappa} \|\gamma_t\|_2^2$ for strongly convexity (with $\kappa > 0$):

$$z_t \triangleq \rho_t + \frac{\gamma_t}{\kappa} \in \partial \left(\|\gamma_t\|_1 + \frac{1}{2\kappa} \|\gamma_t\|_2^2 \right)$$

• γ_t can be obtained from z_t :

 $\gamma_t = \kappa * \operatorname{sign}(z_t) \odot \max(|z_t| - 1, 0).$

• Split Linearized Bregman Invserse Scale Space (Split LBISS):

$$\begin{aligned} \beta_t / \kappa &= -\nabla_\beta \mathcal{L}_\nu(\beta_t, \gamma_t) \\ \dot{z}_t &= -\nabla_\gamma \mathcal{L}_\nu(\beta_t, \gamma_t) \\ \gamma_t &= \kappa * \operatorname{sign}(z_t) \odot \max(|z_t| - 1, 0) \end{aligned}$$

• Discretization. Split Linearized Bregman Iteration (Split LBI):

$$\beta_{k+1} = \beta_k - \kappa \alpha \nabla_\beta \mathcal{L}(\beta_k, \gamma_k)$$

$$z_{k+1} = z_k - \alpha \nabla_\gamma \mathcal{L}(\beta_k, \gamma_k)$$

$$\gamma_{k+1} = \kappa * \operatorname{sign}(z_{k+1}) \odot \max(|z_{k+1}| = 1, 0)$$

Structural Sparsity in Medical Imaging

Recovering Structural Sparsity via Differential Inclusion False-Discovery-Rate Control

Solution Path

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Solution Path

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Structural Sparsity in Medical Imaging Recovering Structural Sparsity via Differential Inclusion False-Discovery-Rate Control

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

No-False-Positive

Do the early selected features belong to the true signal set?

Structural Sparsity in Medical Imaging Recovering Structural Sparsity via Differential Inclusion False-Discovery-Rate Control

Intuition

• Irrespresentable Condition \implies Loss decay on the oracle space.

- Restricted Strong Convexity \implies Unique solution.
- Early Stopping after picking up the signals.
・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Irrepresentable Condition

 ν in Variable Splitting: relax $\gamma^{\star} = D\beta^{\star}$.

$$\mathcal{L}_{\nu}(\beta,\gamma) := \frac{1}{2n} \|y - X\beta\|_{2}^{2} + \frac{1}{2\nu} \|D\beta - \gamma\|_{2}^{2}.$$

Assumption 1 (Irrepresentable Condition).

$$\operatorname{IRR}(\nu) := \| \Sigma_{\mathcal{S}^c, \mathcal{S}}(\nu) \Sigma_{\mathcal{S}, \mathcal{S}}^{-1}(\nu) \|_{\infty} < 1.$$

The $\Sigma(\nu) := (I - D(\nu X^* X + D^\top D)^{\dagger} D^\top)/\nu$.

Structural Sparsity in Medical Imaging cooccession occession occes

Decollinearity

The angle between
$$(S^c)$$
 and (β, S) , via $\mathrm{H}(\nu) = \nabla^2 \mathcal{L}_{\nu}(\beta, \gamma)$.

$$\theta_{\mathcal{S}^{c},(\beta,S)}^{\nu} := \arccos\left(\sqrt{\frac{\operatorname{trace}(H_{\mathcal{S}^{c},(\beta,S)}(\nu)H_{(\beta,S),(\beta,S)}^{\dagger}(\nu)H_{(\beta,S),\mathcal{S}^{c}}(\nu))}{\operatorname{trace}(H_{\mathcal{S}^{c},\mathcal{S}^{c}}(\nu))}}\right)$$

Theorem (Sun-Han-Hu-Yao-Wang'2020)

The
$$\lim_{\nu \to \infty} \theta_{S^c,(\beta,S)}^{\nu} \to \pi/2 \iff \ker(X) \subset \ker(D_S).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Irrepresentable Condition

 ν in Variable Splitting: relax $\gamma^{\star} = D\beta^{\star}$.

$$\mathcal{L}_{\nu}(\beta,\gamma) := \frac{1}{2n} \|y - X\beta\|_{2}^{2} + \frac{1}{2\nu} \|D\beta - \gamma\|_{2}^{2}.$$

Assumption 1 (Irrepresentable Condition).

$$\operatorname{IRR}(\nu) := \| \Sigma_{\mathcal{S}^c, \mathcal{S}}(\nu) \Sigma_{\mathcal{S}, \mathcal{S}}^{-1}(\nu) \|_{\infty} < 1.$$

The $\Sigma(\nu) := (I - D(\nu X^*X + D^{\top}D)^{\dagger}D^{\top})/\nu.$

Theorem (Huang-Sun-Xiong-Yuan' 2016)

• $\lim_{\nu \to 0} \operatorname{IRR}(\nu) = \operatorname{IC}$ (genlasso Vaiter'13).

• $\lim_{\nu \to \infty} \operatorname{IRR}(\nu)$ exists and $= 0 < \operatorname{IC} \iff \ker(X) \subset \ker(D_S)$.

Assumptions

 ν in Variable Splitting: relax $\gamma^{\star} = D\beta^{\star}$.

$$\mathcal{L}_{\nu}(\beta,\gamma) := \frac{1}{2n} \|y - X\beta\|_{2}^{2} + \frac{1}{2\nu} \|D\beta - \gamma\|_{2}^{2}.$$

Assumption 1 (Irrepresentable Condition).

$$\operatorname{IRR}(\nu) := \| \boldsymbol{\Sigma}_{\boldsymbol{S}^{c},\boldsymbol{S}}(\nu) \boldsymbol{\Sigma}_{\boldsymbol{S},\boldsymbol{S}}^{-1}(\nu) \|_{\infty} < 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Assumption 2 (Restricted Strongly Convexity).

 $\Sigma_{S,S} \ge \lambda I$, for some $\lambda > 0$. The $\Sigma(\nu) := (I - D(\nu X^*X + D^\top D)^\dagger D^\top)/\nu$.

Path Consistency

Sparse Estimator $\tilde{\beta}_t$.

$$\tilde{\beta}_t = P_{S_t}(\beta_t) := \arg\min_{D_{S^c} x = 0} \|\beta_t - x\|_2.$$

Theorem (Huang-Sun-Xiong-Yuan'2020)

Under Irrepresentable Condition and Restricted Strongly Convexity, then there exists $\bar{\tau}$ s.t.

- No-false-positive. supp $(\gamma_t) \subseteq S$, for $0 \leq t \leq \overline{\tau}$.
- Sign-Consistency. $\operatorname{sign}(\gamma_{\overline{\tau}}) = \operatorname{sign}(\gamma^{\star})$ if γ^{\star} is strong.
- ℓ_2 consistency of γ_t . $\|\gamma_{\overline{\tau}} D\beta^{\star}\|_2 \leq \mathcal{O}(\sqrt{\frac{s\log m}{n}}).$
- ℓ_2 consistency of $\tilde{\beta}_t$. $\|\tilde{\beta}_t \beta^\star\|_2 \leq \mathcal{O}(\sqrt{\frac{s\log m}{n}})$.

Structural Sparsity in Medical Imaging

Simulation

Left. IRR(ν) vs ν and IC.

Right. Split LBI vs genlasso in terms of AUC.

D is 1-d fused lasso matrix

(日本)(同本)(日本)(日本)(日本)

Explore Beyond Sparsity

Variable Splitting. Dense and Sparse parameter.

$$\mathcal{L}_{\nu}(\beta,\gamma) := \frac{1}{2n} \|y - X\beta\|_{2}^{2} + \frac{1}{2\nu} \|D\beta - \gamma\|_{2}^{2}.$$

- Sparse parameter: $\tilde{\beta} := \arg \min_{D_{S^c} x = 0} \|\beta x\|_2$.
- Dense parameter: Explore beyond sparsity.

Summary

Split Bregman Inverse Scale Space (Split Bregman ISS)

$$0 = -\nabla_{\beta} \mathcal{L}_{\nu}(\beta_{t}, \gamma_{t})$$
$$\dot{\rho}_{t} = -\nabla_{\gamma} \mathcal{L}_{\nu}(\beta_{t}, \gamma_{t})$$
$$\rho_{t} \in \partial \|\gamma_{t}\|_{1}$$

- A regularization solution path via differential inclusion.
- More and more variables are selected as iterates.
- Earlier selected features belong to the true signal set.
- Variable Splitting enables to explore beyond sparsity.

Structural Sparsity in Medical Imaging Recovering Structural Sparsity via Differential Inclusion False-Discovery-Rate Control

False-Discovery-Rate (FDR) Control

Piratically, the incoherence is unknown. Then,

Structural Sparsity in Medical Imaging Recovering Structural Sparsity via Differential Inclusion False-Discovery-Rate Control

False-Discovery-Rate (FDR) Control

Piratically, the incoherence is unknown. Then,

How to control the FDR?

(日) (四) (日) (日) (日)

••••••••••••••••••••••••••••••••••

Outline

Structural Sparsity in Medical Imaging

3 False-Discovery-Rate Control

- Split Knockoff
- FDR Smoothing on Heterogeneous Features

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Knockoff (Review) for Pure Sparsity

• FDR control for pure sparsity. $y = X\beta^* + \varepsilon$.

• Control
$$\mathbb{E}\left[\frac{\{i\in\hat{S}:\beta^*(i)=0\}}{|\hat{S}|}\right] \leqslant q.$$

Knockoff (Review) for Pure Sparsity

• FDR control for pure sparsity. $y = X\beta^* + \varepsilon$.

• Control
$$\mathbb{E}\left[\frac{\{i\in\hat{S}:\beta^*(i)=0\}}{|\hat{S}|}\right] \leqslant q.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• For each X_j , create a knockoff copy \tilde{X}_j as a control.

Knockoff (Review) for Pure Sparsity

• FDR control for pure sparsity. $y = X\beta^* + \varepsilon$.

• Control
$$\mathbb{E}\left[\frac{\{i\in\hat{S}:\beta^*(i)=0\}}{|\hat{S}|}\right] \leq q.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For each X_j, create a knockoff copy X̃_j as a control.

• Implement black-box algorithm to obtain Z_j and \tilde{Z}_j .

• $Z_j(\tilde{Z}_j)$: the effect of X_j on $Y(\tilde{X}_j$ on Y).

• For each j, $W_j := \max(Z_j, \tilde{Z}_j) * \operatorname{sign}(Z_j - \tilde{Z}_j)$.

Knockoff (Review) for Pure Sparsity

• For each
$$j$$
, $W_j := \max(Z_j, \tilde{Z}_j) * \operatorname{sign}(Z_j - \tilde{Z}_j)$.

- For non-null: $W_j > 0$ and is large.
- For null: $P(W_j > 0) = 1/2$, *i.e.*, comparable with its copy.

Figure: Null Statistics are pairwise exchangeable.

Knockoff (Review) for Pure Sparsity

• Knockoff selects features that are clearly better than their copies.

• Knockoff selects $\hat{S} := \{i : W_i > T_q\}, T_q := \min_T \left\{ \frac{|\{i:W_i < -T\}|}{1 \cup |\{i:W_i \ge T\}|} \right\}$

(日) (四) (日) (日) (日)

Knockoff (Review) for Pure Sparsity

• Knockoff selects features that are clearly better than their copies.

• Knockoff selects
$$\hat{S} := \{i : W_i > T_q\}, T_q := \min_T \left\{ \frac{|\{i:W_i < -T\}|}{1 \cup |\{i:W_i \ge T\}|} \right\}$$

Theorem (R.Barbers and Candés'15)

Given any desired level q > 0, knockoff has $FDR \leq q$.

Heterogeneous Noise for Structural Sparsity

Structural sparsity: $y = X\beta^* + \varepsilon$, $\gamma^* = D\beta^* (D \in \mathbb{R}^{m \times p})$ is sparse.

- If rank(D) = m, we have $y = XD^{\dagger}\gamma^{*}(=\beta^{*}) + \varepsilon$.
- For m > p or rank(D) < m, $\tilde{y} = X_{\beta}\beta^* + X_{\gamma}\gamma^* + \varepsilon$:

$$\tilde{y} = \begin{pmatrix} \frac{y}{\sqrt{n}} \\ 0_m \end{pmatrix}, X_{\beta} = \begin{pmatrix} \frac{X}{\sqrt{n}} \\ \frac{D}{\sqrt{\nu}} \end{pmatrix}, X_{\gamma} = \begin{pmatrix} 0_{n \times m} \\ -\frac{I_m}{\sqrt{\nu}} \end{pmatrix}, \tilde{\varepsilon} = \begin{pmatrix} \frac{\varepsilon}{\sqrt{n}} \\ 0_m \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Heterogeneous Noise for Structural Sparsity

Structural sparsity: $y = X\beta^* + \varepsilon$, $\gamma^* = D\beta^* (D \in \mathbb{R}^{m \times p})$ is sparse.

- If rank(D) = m, we have $y = XD^{\dagger}\gamma^{*}(=\beta^{*}) + \varepsilon$.
- For m > p or rank(D) < m, $\tilde{y} = X_{\beta}\beta^* + X_{\gamma}\gamma^* + \varepsilon$:

$$\tilde{y} = \begin{pmatrix} \frac{y}{\sqrt{n}} \\ 0_m \end{pmatrix}, X_{\beta} = \begin{pmatrix} \frac{X}{\sqrt{n}} \\ \frac{D}{\sqrt{\nu}} \end{pmatrix}, X_{\gamma} = \begin{pmatrix} 0_{n \times m} \\ -\frac{l_m}{\sqrt{\nu}} \end{pmatrix}, \tilde{\varepsilon} = \begin{pmatrix} \frac{\varepsilon}{\sqrt{n}} \\ 0_m \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Exchangeability Fails

(

• For each
$$X_{\gamma}(j)$$
, construct a copy $X_{\gamma}(j)$.

•
$$Z_j := \sup\{\lambda : \gamma_j(\lambda) \neq 0\}, \ \tilde{Z}_j := \sup\{\lambda : \tilde{\gamma}_j(\lambda) \neq 0\}.$$

 $\gamma(\lambda) := \arg\min_{\gamma} \frac{1}{2} \|\tilde{y} - X_{\beta}\beta(\lambda) - X_{\gamma}\gamma\|^2 + \lambda \|\gamma\|_1,$
 $\tilde{\gamma}(\lambda) := \arg\min_{\tilde{\gamma}} \frac{1}{2} \|\tilde{y} - X_{\beta}\beta(\lambda) - \tilde{X}_{\gamma}\tilde{\gamma}\|^2 + \lambda \|\tilde{\gamma}\|_1.$

Figure: For null j, $P(W_j < 0) > P(W_j > 0)$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Split Knockoff (Truncations)

Solution (Truncation). Given $\{Z_j\}_j, \{\tilde{Z}_j\}_j$, we define

$$W_j = Z_j * \operatorname{sign}(Z_j - \tilde{Z}_j * \mathbf{1}(\mathbf{r}_j = \tilde{\mathbf{r}}_j)),$$

where $r_j = \lim_{t \to Z_j-} \operatorname{sign}(\gamma_j(t))$ and $\tilde{r}_j = \lim_{t \to \tilde{Z}_j-} \operatorname{sign}(\tilde{\gamma}_j(t))$.

Null Statistics W_i are not Independent

We look at the KKT condition:

$$\lambda \rho(\lambda) + \frac{\gamma(\lambda)}{\nu} = \frac{D\beta(\lambda)}{\nu} \text{ (determined by } \xi := \frac{X^{\top}\varepsilon}{n}\text{)},$$
$$\lambda \tilde{\rho}(\lambda) + \frac{\tilde{\gamma}(\lambda)}{\nu} = \frac{D\beta(\lambda)}{\nu} + \underbrace{\{-s\gamma^* + \tilde{X}_{\gamma,1}\varepsilon/\sqrt{n}\}}_{\zeta}.$$

Condition on $\xi := \frac{X^{\top} \varepsilon}{n}$, $P(W_j > 0) = P(\zeta_j < 0)$. Besides,

$$\mathbb{E}[\zeta] = 0, \operatorname{Var}[\zeta] = \frac{\sigma^2(2s - \nu s^2)}{n} I_m;$$
$$\mathbb{E}[\zeta|\xi] \neq 0, \operatorname{Var}[\zeta|\xi] = \frac{\sigma^2(2s - \nu s^2)}{n} I_m - R;$$

Solution: Data Splitting

We can split the dataset into $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2$:

- $\beta(\lambda)$ is obtained from \mathcal{D}_1 ;
- Z_j, \tilde{Z}_j are obtained from \mathcal{D}_2 .

$$\lambda \rho(\lambda) + \frac{\gamma(\lambda)}{\nu} = \frac{D\beta(\lambda)}{\nu} \text{ (determined by } \xi := \frac{X^{\top}\varepsilon_{1}}{n_{1}}\text{)},$$
$$\lambda \tilde{\rho}(\lambda) + \frac{\tilde{\gamma}(\lambda)}{\nu} = \frac{D\beta(\lambda)}{\nu} + \zeta.$$

Then, $P(W_j > 0) = P(\zeta_j < 0)$ with

$$\mathbb{E}[\zeta] = 0, \, \operatorname{Var}[\zeta] = \frac{\sigma^2(2s - \nu s^2)}{n_2} I_m.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theoretical Analysis

Theorem (FDR Control of Split Knockoff)

For any q > 0, we have $FDR \leq q$.

Simulation Experiments ⁶:

⁶Controlling the False Discovery Rate in Transformational Sparsity: Split Knockoffs.

3

Alzheimer's Disease

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Knockoff requires n > m + p.

In high-dimensional analysis, the power is limited due to **multi-collinearity** problem.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

From p = 2,527 voxels to p = 20,091.

Accuracy of Split LBI: V₈ (90.91%) vs V₄ (89.77%).

- V_8 : 2,527 voxels with $8 \times 8 \times 8mm^3$.
- V_4 : 20,091 voxels with $4 \times 4 \times 4mm^3$.

The performance drops with even more features!

Structural Sparsity in Medical Imaging	Recovering Structural Sparsity via Differential Inclusion	False-Discovery-Rate Control
		000000000000000000000000000000000000000

How do we alleviate this problem and improve emprical utility?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Hypothesis Testing

• Two-sample T-test: $t_i = \frac{\bar{x}_{1,i} - \bar{x}_{2,i}}{\sqrt{\frac{s_{1,i}^2}{n_1} + \frac{s_{2,i}^2}{n_2}}}, s_{1,i}^2 = \frac{1}{n_1 - 1} \sum_{j=1}^{n_1} (x_{1,i}(j) - \bar{x}_{1,i})^2.$

•
$$\mathcal{H}_0: t_i \sim \mathcal{T}_{n_1+n_2-2}$$
. We obtain p_i .

- Cannot control FDR.
- Benjamini-Hochberg Procedure [Bajamini'1995]: first rank $p_1, ..., p_n$ in an ascending order $p_{(1)}, ..., p_{(n)}$ and selects $\{i : i \leq k\}$ in which $k := \max\{i : p_{(i)} \leq \frac{i\alpha}{n}\}.$

• Too conservative in feature selection.

Local FDR

The [Efron'2001] proposed LocalFDR, an Empirical-Bayes Method:

$$f(z) = p_0 f_0(z) + (1 - p_0) f_1(z)$$
, where

A D N A 目 N A E N A E N A B N A C N

• p₀ denotes the prior of being null;

• $f_0(z), f_1(z)$ denote the p.d.f of null and non-null groups. We have: $fdr(z) := p(i \text{ is null } |z) = \frac{p_0 f_0(z)}{f(z)}$, where

- Central Matching to estimate $f_0(z), p_0$;
- Kernel density to estimate f(z).

Limitation: does not consider spatial coherence!

FDR Smoothing

The [Tansey'2014] considers:

$$f(z) = p_0 f_0(z) + (1 - p_0) f_1(z) \implies f(z) = (1 - c_i) f_0(z) + c_i f_1(z),$$

where $c_i := \operatorname{sigmoid}(\beta_i)$. We optimize:

 $\ell(\beta) + \lambda \| D\beta \|_1,$

where
$$\ell(\beta) := -\sum_{i=1}^{N} \log \left(\frac{\exp(\beta_i)}{1 + \exp(\beta_i)} f_1(z_i) + \frac{1}{1 + \exp(\beta_i)} f_0(z_i) \right)$$

Heterogeneous Smoothing

Note: The procedural bias and lesions are heterogeneous:

- Procedural bias is enlarged; lesions are atrophied.
- Different degree of spatial coherence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Heterogeneous Smoothing

We split $G := G_{\text{pro}} \cup G_{\text{les}} \cup G_{\text{int}}$, with • $G_{\text{pro}} = (V_{\text{pro}}, E_{\text{pro}}), V_{\text{pro}} = \{i : z_i \leq 0\}, E_{\text{pro}} = \{(i, j) \in E : z_i, z_j \leq 0\};$ • $G_{\text{les}} = (V_{\text{les}}, E_{\text{les}}), V_{\text{les}} = \{i : z_i > 0\}, E_{\text{les}} = \{(i, j) \in E : z_i, z_j > 0\};$ • $G_{\text{int}} = (V_{\text{int}}, E_{\text{int}}), V_{\text{les}} = V_{\text{pro}} \cup V_{\text{les}}, E_{\text{int}} = \{(i, j) \in E : z_i \leq 0, z_j > 0\}.$ We turn to optimize:

$$\ell(\beta) + \lambda_{\rm pro} \| D_{\mathcal{G}_{\rm pro}} \beta \|_1 + \lambda_{\rm les} \| D_{\mathcal{G}_{\rm les}} \beta \|_1 + \lambda_{\rm int} \| D_{\mathcal{G}_{\rm int}} \beta \|_1,$$

with $D_G\beta(i,j) = \beta_i - \beta_j$ for $(i,j) \in E^7$.

⁷FDR-HS: An Empirical Bayesian Identification of Heterogenous Features in Neuroimage Analysis. MICCAI, 2018

Optimization

The loss is not convex, hence we introduce

$$s_i = \begin{cases} 1 & \text{if } z_i \sim f_1(z) \\ 0 & \text{if } z_i \sim f_0(z) \end{cases}$$

The loss is the modified as:

$$\begin{split} \ell(\beta, s) &:= \sum_{i=1}^{N} \{ \log \left(1 + \exp(\beta_i) \right) - s_i \beta_i \}, \\ g(\beta, s) &:= \ell(\beta, s) + \lambda_{\text{pro}} \| D_{\mathcal{G}_{\text{pro}}} \beta \|_1 + \lambda_{\text{les}} \| D_{\mathcal{G}_{\text{les}}} \beta \|_1 + \lambda_{\text{int}} \| D_{\mathcal{G}_{\text{int}}} \beta \|_1. \end{split}$$

We implement Expectation-Maximization (EM) to optimize β and z^8 .

Feature Selection

After estimating $\tilde{\beta}_i$, $f_0(z)$, $f_1(z)$, we selects feature with

$$p(s_i = 0 | z_i, \tilde{\beta}_i) = \frac{(1 - \tilde{c}_i) f_0(z_i)}{\tilde{c}_i f_1(z_i) + (1 - \tilde{c}_i) f_0(z_i)} < \gamma \left(\tilde{c}_i = \operatorname{sigmoid}(\beta_i)\right).$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

The $\gamma \in (0,1)$ is a pre-setting threshold hyper-parameter.

Results on ADNI

Table 1. Comparison between FDR-HS and others on 10-fold classification result

	Univariate + ElasticNet			Multivariate		
	T-test	BH_q [4]	LocalFDR [7]	FDR-HS	GSplit LBI [12]	Elastic Net [16]
15ADNC	89.61%	89.61%	87.01%	90.26%	85.06%	87.01%
15MCINC	70.50%	71.00%	73.50%	75.00%	72.50%	72.00%
30ADNC	88.64%	89.77%	89.77%	91.48%	89.77%	88.07%

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
Structural Sparsity in Medical Imaging Recovering Structural Sparsity via Differential Inclusion False-Discovery-Rate Control

Feature Selection on ADNI

T-test

 BH_q

localFDR

FDR-HS

GSplit LBI

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Table 2. Comparison between FDR-HS and others on stability (measured by mDC)

	T-test	BH_q	LocalFDR	FDR-HS	GSplit LBI
$mDC^{(+)}$ (Lesion features)	0.6705	0.6248	0.6698	0.6842	0.4598
$mDC^{(-)}$ (Procedural Bias)	0.6267	0.5541	0.5127	0.6540	0.3033

$$mDC := \frac{K|\bigcap_{k=1}^{K} S^{\pm}(k)|}{\sum_{k=1}^{K} |S^{\pm}(k)|}, \ S^{\pm}(k) : \text{ selected lesions and procedural bias.}$$

Thank You!

sunxinwei@fudan.edu.cn

