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Sparse Learning
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Examples of Noisy Data/Outliers
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Qutliers are the irregular data compared with the majority of the dataset.
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towardsdatascience.com/this-article-is-about-identifying-outliers-through-funnel-plots-using-the-microsoft-power-bi-d7ad16ac9ccc
en.wikipedia.org/wiki/Outlier#/media/File:Standard deviation diagram micro.svg @ k&m
medium.com/analytics-vidhya/its-all-about-outliers-cbbe172aal1309

School of Data Science
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Noisy Data in Label Space

 Random Corruptions

synthetic dataset: outlies(red); good observations(blue)

* Noisy search engine results
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|[dentify Noisy Data in Label Space

Linear system
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Noisy One-hot Labels
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Approximated Linear Assumption in Networks

Network FC One-hot
Features output labels

0R X3 =

Softmax
Layer Operator

y; = SoftMax(z; f3)

Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.
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[dentify Noisy Data in Label Space: The Indicator

Linear system

with Noisy Data/l.abels
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Understanding y in Statistics

y=x'B+ec+7

A

- ~; equals to the residual predict error v; = y; — x,' B

1

Row residuals fail to detect outliers at leverage points.
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[1] Yiyuan She and Art B Owen. Outlier detection using nonconvex penalized regression. Journal of the American Statistical Association, 2011.



Understanding y in Statistics

y=x'B+ec+7

- 7; equals to the residual predict error v; = y; — «

Leave-one-out externally studentized residual:

PR yi—x,; B
P = e (It a (X X ) @)1/

& test whether v =01iny = X3+ ~v1; + €.

[1] Yiyuan She and Art B Owen. Outlier detection using nonconvex penalized regression. Journal of the American Statistical Association, 2011.
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Understanding y in Statistics

y=a B+e+7

A

- ~,; equals to the residual predict error v; = y; — .

1

Leave-one-out externally studentized residual:

PR yi—x,; B
P = e (It a (X X ) @)1/

& test whether v =01iny = X3+ ~v1; + €.

When there are multiple outliers:
1. masking: multiple outliers may mask each other and being undetected;

2. swamping: multiple outliers may lead the large t; for clean data.

U L 12,
[1] Yiyuan She and Art B Owen. Outlier detection using nonconvex penalized regression. Journal of the American Statistical Association, 2011. A K3 2
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Understanding y in Statistics

y=x'B+ec+7

- 7; equals to the residual predict error v; = y; — «

Leave-one-out externally studentized residual:

PR yi—x,; B
P = e (It a (X X ) @)1/

& test whether v =01iny = X3+ ~v1; + €.

v

y=XB+e+r

[1] Yiyuan She and Art B Owen. Outlier detection using nonconvex penalized regression. Journal of the American Statistical Association, 2011.
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|[dentify Noisy Data in the Dataset

yi=z; B+e+y — i O ={i:% # 0}

- N N ~ R ~ R r \
..I H H (m =
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. m | ) ) (_-

argminL (8,7) := ¥~ XB =1l + AR (7
Y

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020
Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021.
Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.
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Simplification

argminL (B8,7) = |Y — X8 — 7|z + AR (7)

B,
=0 | B=(XTX)XT(Y -
2
argmin [ Y - X (X7X)' X7 (Y — )~ 7 L HAR(Y)
9

H=X(X"X)'X"T | X=1-H, Y =XY

2
argmin || Y — X~ F+)\R ()
¥

A linear regression problem!

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020
Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021.
Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.
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Solving Gamma in Linear Regression

~ - 2
argmin ||Y — X~ . + AR (7)
Y
How to select A7 We regard 4 = f(\).
* heuristics rules A = 2.567 When A — 00, 4 — 0.

* Cross-validation?

» Data adaptive techniques? With R (v) = >, [[7ill:
e AIC BIC? ~ vanishes instance by instance.

Ci = supiA: [|[7:(A)]| # 0}

It is hard to select a proper A.
This can be sovled by GLMnet|1].

X 5 B

[1] Friedman, et al. 2010. “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software. 5%/ School of Data Science



Solving Gamma in Linear Regression

2
argmin [|[Y — X~ . + AR ()
Y

We regard v = f(\).

When A — o0, v — 0.

|

With R (v) = 2?21 17illas

~ vanishes instance by instance.

Ci = sup{A: ||7:(MN)] # 0}
This can be sovled by GLMnet|1].

I

X # 45 A on

[1] Friedman, et al. 2010. “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software. 255/ School of Data Science



Instance Credibility Inference

Network  FC  One-hot Network One-hot
Fe(aiures output  labels F%ures abels ar%minL (3,7) =Y — X8 — ’7”%‘ AR (%)
O O Y
O“Fc  softmax O“Fe argmin ||Y — X~|| + AR (v)
Layer Operator Layer ~ F
y; = SoftMax(z, ) Yy =x;, f+e l

o D C; = supiA: ||7:i(N)]] # 0}
T B =

R |
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Noisy One-hot Labels Deep Features Fitted Coef. Noisy Data Indicator

Y c RRXC X = R%Xd 5 c Rch /y c RTLXC
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Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020
Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021.
Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.




Noise Set Recovery
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When will the model identify all the outliers®

Assume ¢ is i.i.d zero-mean sub-Gaussian noise. We give three conditions:

e (C1: Restricted eigenvalue)

e (C2: Irrepresentability) dn € (0, 1],

- - - _ —1
UJl.Us (UST U5> <1-1

e (C3: Large error)

’7111111 = mm ‘:);*‘ > h <A7 T, ﬁ77*> .

1€5

[1]: M. J. Wainwright, Sharp thresholds for high-dimensional and noisy sparsity recovery using |1-constrained quadratic programming. TIT 2009. School of Data sm;c’?



A non-asymptotic probabilistic result

Based on these conditions, we could provide the following theorem:

Theorem 1 (Identifiability of ICI). Let A > 20\7?@ Viog en. Then with probability

greater than 1 — 2(cn)_1, the problem has a unique solution ~ satisfies the
following properties:
1) If C1 and C2 hold, ‘the wrong-predicted instances indicated by ICI has no

false positive error, i.e., S C S and hence O C O, and

%;S_’?g Sh(A7n7ﬁ7’7*)7

O

2) If C1, C2, and C8 hold, ICI will tdentify all the correctly-predicted instance,
i.e., S =5 and hence O = O (in fact sign (%?) = sign (¥*) ).

Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021.




[dentifiabllity in reality: sub-Gaussian noise
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Sparse Learning

iIn Few-Shot Learning
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Definition of Few-Shot Learning

Tackle machine learning problem with only limited training data provided.

Few-Shot Learning

Low cost High cost

Unsupervised Learning From Semi-Supervised Supervised
Learning Noisy Labels Learning Learning
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Binary classification
with many labeled data

Few-shot binary classification

Few-shot binary classification
with unlabeled data
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MVotivation

Labeled Image Labels

Train

O0Ow»

Self-Taught

Unlabeled Image Few-Shot Learning

Models
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Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020 @
Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021

School of Data Science



Framework

Expanding the Training Set

Images Features Labels
Train ﬁ‘
N > | s >
D :
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Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020 X 4 B
Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021 School of Data Science



Sparse Learning in |Cl

Degrees of Freedom
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Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020
Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021




Sparse Learning: Extend to Logistic Regression

EXP (Xi,-/g-,c -+ 7@}0)

argminL (3,7) = |[Y — X8 — v|% + AR (v) Yi.=—¢ - € ¢
B,y l lel CXPp (X'L',-IB-,Z T 'Yi,l)
: B T\ T v oy _ _
argnin|Y — X (X7 X) T ¥ — ) |+ AR () 2oxn | so@q
Mo wllf exp (X, .03
arg};nm Y X’YHF + AR () Y. = ( b ’C) E; c

Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021 School of Data S



[dentifiabllity in Reality: Conditions and Accuracy

—@*

Satisfied Assumptions None C1 C1 and C2 All
Improved Episodes 0 424 1035 40
Total Episodes 0 793 1164 43
[/T — 53.5% 88.9% 93.0%

-

1) In more than half of the experiments the assumptions C1-C2 are satisfied.
Most of them (89.0%) will achieve better performance after self-taught with ICI.

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020
Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021
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[dentifiabllity in Reality: Conditions and Accuracy
— N

Satisfied Assumptions None C1 C1 and C2 All
Improved Episodes 0 424 1035 40
Total Episodes 0 793 1164 43
[/T — 53.5% 88.9% 93.0%

e

2) When all the assumptions are satisfied, we will get better performance in a
high ratio (93.0%).

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020 & % 45 B
Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021 57 Schoolof Data Science



[dentifiabllity in Reality: Conditions and Accuracy

Satisfied Assumptions None C1 C1 and C2 All
Improved Episodes 0 424 1035 40
Total Episodes 0 793 1164 43
[/T — 53.5% 88.9% 93.0%

e S

3) Even if C2-C3 are not satisfied, we still have the chance of improving the
performance (53.5%).

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020 X 4 B
Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021 2 '
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Sparse Learning

in Learning with Noisy Labels




Deep
Models

Definition of learning with noisy labels
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Framework
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Make It scalable to large datasets
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Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.
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Strategies to help train the network

e Append a /,(q < 1) penalty to encourage the linear relation between
feature and one-hot encoded vector:

L(@iy;) = Ligo (Lon (@i, y,) + A||[a] Wel|,)

o Use CutMix to further exploit the support of noisy data

xr =M O, Lclean (1 _ M) O, mnoisy

Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.



| abel precision performance
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Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.
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