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Sparse Learning 
for Noisy Data Detection



Examples of Noisy Data/Outliers

Figures from
[1] towardsdatascience.com/this-article-is-about-identifying-outliers-through-funnel-plots-using-the-microsoft-power-bi-d7ad16ac9ccc
[2] en.wikipedia.org/wiki/Outlier#/media/File:Standard_deviation_diagram_micro.svg
[3] medium.com/analytics-vidhya/its-all-about-outliers-cbe172aa1309

Outliers are the irregular data compared with the majority of the dataset.

https://towardsdatascience.com/this-article-is-about-identifying-outliers-through-funnel-plots-using-the-microsoft-power-bi-d7ad16ac9ccc
https://en.wikipedia.org/wiki/Outlier


Noisy Data in Label Space

• Random Corruptions

• Annotator mistakes • Complex/Confusing items identified

• Noisy search engine results



Identify Noisy Data in Label Space

Linear system Y = Xβ

β ∈ R
d×c

=

Noisy One-hot Labels

Y ∈ R
n×c

X ∈ R
n×d

Deep Features Fitted Coef.

β is sensitive to noisy data!



Approximated Linear Assumption in Networks

yi = SoftMax(x⊤
i β)

Network
Features

FC
output

One-hot
labels

FC
Layer

Softmax
Operator

yi = x
⊤
i β + ε

Network
Features

One-hot
labels

FC
Layer

Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.



Identify Noisy Data in Label Space: The Indicator
Linear system

with Noisy Data/Labels Y = Xβ + γ

β ∈ R
d×c

Noisy One-hot Labels

Y ∈ R
n×c

X ∈ R
n×d

Deep Features Fitted Coef. Noisy Data Indicator

= +

γ ∈ R
n×c

[Wright et al. TPAMI 09] [She et al. JASA 11] [Fu et al. ECCV 14, TPAMI 16.] [Fan et al. Statistical Sinica 18] [Wang et al. CVPR 20, TPAMI 21, CVPR 22]



Understanding γ in Statistics
y = x⊤β + ε+ γ

γi equals to the residual predict error γi = yi − x⊤
i
β̂

Row residuals fail to detect outliers at leverage points.

[1] Yiyuan She and Art B Owen. Outlier detection using nonconvex penalized regression. Journal of the American Statistical Association, 2011.



Understanding γ in Statistics
y = x⊤β + ε+ γ

γi equals to the residual predict error γi = yi − x⊤
i
β̂

Leave-one-out externally studentized residual:

ti =
yi−x

⊤

i β̂(i)

σ̂(i)(1+xi(X⊤

(i)
X(i))−1xi)1/2

⇔ test whether γ = 0 in y = Xβ + γ1i + ε.

[1] Yiyuan She and Art B Owen. Outlier detection using nonconvex penalized regression. Journal of the American Statistical Association, 2011.



Understanding γ in Statistics
y = x⊤β + ε+ γ

γi equals to the residual predict error γi = yi − x⊤
i
β̂

Leave-one-out externally studentized residual:

ti =
yi−x

⊤

i β̂(i)

σ̂(i)(1+xi(X⊤

(i)
X(i))−1xi)1/2

When there are multiple outliers:
1. masking: multiple outliers may mask each other and being undetected;

2. swamping: multiple outliers may lead the large 𝑡! for clean data.

⇔ test whether γ = 0 in y = Xβ + γ1i + ε.

[1] Yiyuan She and Art B Owen. Outlier detection using nonconvex penalized regression. Journal of the American Statistical Association, 2011.



Understanding γ in Statistics
y = x⊤β + ε+ γ

γi equals to the residual predict error γi = yi − x⊤
i
β̂

Leave-one-out externally studentized residual:

ti =
yi−x

⊤

i β̂(i)

σ̂(i)(1+xi(X⊤

(i)
X(i))−1xi)1/2

⇔ test whether γ = 0 in y = Xβ + γ1i + ε.

y = Xβ + ϵ+ γ

[1] Yiyuan She and Art B Owen. Outlier detection using nonconvex penalized regression. Journal of the American Statistical Association, 2011.



Identify Noisy Data in the Dataset

argmin
β,γ

L (β,γ) := ∥Y −Xβ − γ∥2
F
+ λR (γ)

yi = x⊤
i β + ε+ γi

= +

γ̂i O = {i : γ̂i ̸= 0}

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020
Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021.
Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.



Simplification

argmin
γ

∥

∥

∥
Y −X

(

X⊤X
)†

X⊤ (Y − γ)− γ
∥

∥

∥

2

F

+ λR (γ)

argmin
γ
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∥

∥

Ỹ − X̃γ
∥

∥

∥

2

F

+ λR (γ)

argmin
β,γ

L (β,γ) := ∥Y −Xβ − γ∥2
F
+ λR (γ)

β̂ =
(

X⊤X
)†

X⊤ (Y − γ)∂L
∂β

= 0

X̃ = I −H, Ỹ = X̃YH = X
(

X⊤X
)†

X⊤

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020
Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021.
Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.



We regard γ̂ = f(λ).

With R (γ) =
∑n

i=1
∥γi∥2,

γ vanishes instance by instance.

When λ → ∞, γ̂ → 0.

Solving Gamma in Linear Regression

This can be sovled by GLMnet[1].

[1] Friedman, et al. 2010. “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software.

How to select 𝜆?

• heuristics rules 𝜆 = 2.5 &𝜎?
• Cross-validation?
• Data adaptive techniques?
• AIC, BIC?

It is hard to select a proper 𝜆. Ci = sup{λ : ∥γ̂i(λ)∥ ≠ 0}



We regard γ̂ = f(λ).

With R (γ) =
∑n

i=1
∥γi∥2,

γ vanishes instance by instance.

When λ → ∞, γ̂ → 0.

Solving Gamma in Linear Regression

This can be sovled by GLMnet[1].

[1] Friedman, et al. 2010. “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software.

Ci = sup{λ : ∥γ̂i(λ)∥ ≠ 0}



Instance Credibility Inference

argmin
β,γ

L (β,γ) := ∥Y −Xβ − γ∥2
F
+ λR (γ)

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020
Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021.
Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.
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Noisy One-hot Labels

Y ∈ R
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= +
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Ci = sup{λ : ∥γ̂i(λ)∥ ≠ 0}



Noise Set Recovery



When will the model identify all the outliers?

[1]: M. J. Wainwright, Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming. TIT 2009.



A non-asymptotic probabilistic result

Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021.



Identifiability in reality: sub-Gaussian noise



Sparse Learning 
in Few-Shot Learning



Few-shot binary classification

Definition of Few-Shot Learning
Tackle machine learning problem with only limited training data provided.

Binary classification 
with many labeled data

Few-shot binary classification
with unlabeled data

Low cost High cost

Unsupervised
Learning

Learning From
Noisy Labels

Semi-Supervised
Learning

Supervised
Learning

Few-Shot Learning



Motivation

Labeled Image Labels

Few-Shot
Models

Unlabeled Image
Pseudo-Labels

Self-Taught
Learning

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020
Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021



Framework

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020
Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021



Sparse Learning in ICI

argmin
β,γ

L (β,γ) := ∥Y −Xβ − γ∥2
F
+ λR (γ)

argmin
γ

∥

∥

∥

Ỹ − X̃γ
∥

∥

∥

2

F

+ λR (γ)

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020
Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021

yi = x⊤
i β + ε+ γi

= +



Sparse Learning: Extend to Logistic Regression

Yi,c =
exp (Xi,·β·,c + γi,c)

∑C
l=1

exp (Xi,·β·,l + γi,l)
+ εi,c

Yi,c =
exp

(

X̄i,·β̄·,c

)

∑C
l=1

exp
(

X̄i,·β̄·,l

)
+ εi,c

argmin
γ
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∥

∥
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X⊤X
)†

X⊤ (Y − γ)− γ
∥

∥
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∥

Ỹ − X̃γ
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argmin
β,γ

L (β,γ) := ∥Y −Xβ − γ∥2
F
+ λR (γ)

β̄ = (β,γ)⊤X̄ = (X, I)

Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021



Identifiability in Reality: Conditions and Accuracy

Satisfied Assumptions None C1 C1 and C2 All

Improved Episodes 0 424 1035 40
Total Episodes 0 793 1164 43
I/T − 53.5% 88.9% 93.0%

1) In more than half of the experiments the assumptions C1-C2 are satisfied.
Most of them (89.0%) will achieve better performance after self-taught with ICI.

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020
Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021



Identifiability in Reality: Conditions and Accuracy

Satisfied Assumptions None C1 C1 and C2 All

Improved Episodes 0 424 1035 40
Total Episodes 0 793 1164 43
I/T − 53.5% 88.9% 93.0%

2) When all the assumptions are satisfied, we will get better performance in a
high ratio (93.0%).

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020
Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021



Identifiability in Reality: Conditions and Accuracy

Satisfied Assumptions None C1 C1 and C2 All

Improved Episodes 0 424 1035 40
Total Episodes 0 793 1164 43
I/T − 53.5% 88.9% 93.0%

3) Even if C2-C3 are not satisfied, we still have the chance of improving the
performance (53.5%).

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020
Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021



Sparse Learning 
in Learning with Noisy Labels



Definition of learning with noisy labels

Deep
Models

Robustly 
Trained
Models



Images Features Noisy Labels

Stage 1:
Feature Learning

C
lassifier

Clean or Noisy?

yi = x
⊤
i β + γi + ε

argmin
γ

∥

∥

∥

Ỹ − X̃γ
∥

∥

∥

2

F

+
n
∑

i=1

P (γi;λi)

Stage 2:
Sample Selection

Framework

Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.



Make it scalable to large datasets

Compute
Class Similarity

Group
Dissimilar classes

yi = x
⊤
i β + γi + ε Split into 

pieces

Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.



Strategies to help train the network

• Append a ℓq(q < 1) penalty to encourage the linear relation between
feature and one-hot encoded vector:

L (xi,yi) = 1i/∈O

(

LCE (xi,yi) + λ
∥

∥x
⊤
i Wfc

∥

∥

q

)

• Use CutMix to further exploit the support of noisy data

x̃ = M ⊙ xclean + (1−M)⊙ xnoisy

ỹ = λyclean + (1− λ)ynoisy

Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.



Label precision performance

Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.
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