Sparse Learning for Noisy Data/Labels: A Simple yet Effective Framework for Vision Applications

Yikai Wang yikai-wang.github.io

> School of Data Science Fudan University

Yanwei Fu http://yanweifu.github.io

数据学院 ool of Data Science

Sparse Learning for Noisy Data Detection

Examples of Noisy Data/Outliers

Figures from

[1] towardsdatascience.com/this-article-is-about-identifying-outliers-through-funnel-plots-using-the-microsoft-power-bi-d7ad16ac9ccc

[2] en.wikipedia.org/wiki/Outlier#/media/File:Standard_deviation_diagram_micro.svg

[3] medium.com/analytics-vidhya/its-all-about-outliers-cbe172aa1309

Outliers are the irregular data compared with the majority of the dataset.

100

Noisy Data in Label Space

Random Corruptions

• Annotator mistakes

• Noisy search engine results

Shogun: Total War - IGN ign.com

Aug 21, 1192 CE: First S... nationalgeographic.org

Baal Ascension Materials: What To Farm For G... forbes.com

Complex/Confusing items identified

Identify Noisy Data in Label Space

Linear system

$Y = X\beta$

Approximated Linear Assumption in Networks

 $y_i = \text{SoftMax}(\boldsymbol{x}_i^{\top}\beta)$

Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.

$$y_i = \boldsymbol{x}_i^\top \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

Identify Noisy Data in Label Space: The Indicator

[Wright et al. TPAMI 09] [She et al. JASA 11] [Fu et al. ECCV 14, TPAMI 16.] [Fan et al. Statistical Sinica 18] [Wang et al. CVPR 20, TPAMI 21, CVPR 22]

Row residuals fail to detect outliers at *leverage points*.

[1] Yiyuan She and Art B Owen. Outlier detection using nonconvex penalized regression. Journal of the American Statistical Association, 2011.

$y = x^\top \beta + \varepsilon + \gamma$

 γ_i equals to the residual predict error $\gamma_i = y_i - x_i^{\top}\hat{\beta}$

 γ_i equals to the residual predict error $\gamma_i = y_i - x_i^{\top}\hat{\beta}$ Leave-one-out externally studentized residual: $t_{i} = \frac{y_{i} - \boldsymbol{x}_{i}^{\top} \hat{\beta}_{(i)}}{\hat{\sigma}_{(i)} (1 + \boldsymbol{x}_{i} (\boldsymbol{X}_{(i)}^{\top} \boldsymbol{X}_{(i)})^{-1} \boldsymbol{x}_{i})^{1/2}}$

 \Leftrightarrow test whether $\gamma = 0$ in $\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \gamma \boldsymbol{1}_i + \boldsymbol{\varepsilon}$.

[1] Yiyuan She and Art B Owen. Outlier detection using nonconvex penalized regression. Journal of the American Statistical Association, 2011.

$y = x^{\top}\beta + \varepsilon + \gamma$

When there are multiple outliers:

- **1. masking**: multiple outliers may mask each other and being undetected;
- **2. swamping**: multiple outliers may lead the large t_i for clean data.

[1] Yiyuan She and Art B Owen. Outlier detection using nonconvex penalized regression. Journal of the American Statistical Association, 2011.

$y = x^{\top}\beta + \varepsilon + \gamma$

 γ_i equals to the residual predict error $\gamma_i = y_i - x_i^{\top} \hat{\beta}$ Leave-one-out externally studentized residual: $t_{i} = \frac{y_{i} - \boldsymbol{x}_{i}^{\top} \hat{\beta}_{(i)}}{\hat{\sigma}_{(i)} (1 + \boldsymbol{x}_{i} (\boldsymbol{X}_{(i)}^{\top} \boldsymbol{X}_{(i)})^{-1} \boldsymbol{x}_{i})^{1/2}}$ \Leftrightarrow test whether $\gamma = 0$ in $\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \gamma \boldsymbol{1}_i + \boldsymbol{\varepsilon}$.

 γ_i equals to the residual predict error $\gamma_i = y_i - x_i^{\top}\hat{\beta}$ Leave-one-out externally studentized residual: $t_{i} = \frac{y_{i} - \boldsymbol{x}_{i}^{\top} \hat{\beta}_{(i)}}{\hat{\sigma}_{(i)} (1 + \boldsymbol{x}_{i} (\boldsymbol{X}_{(i)}^{\top} \boldsymbol{X}_{(i)})^{-1} \boldsymbol{x}_{i})^{1/2}}$ \Leftrightarrow test whether $\gamma = 0$ in $\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \gamma \boldsymbol{1}_i + \boldsymbol{\varepsilon}$. $y = Xeta + \epsilon + \gamma$

[1] Yiyuan She and Art B Owen. Outlier detection using nonconvex penalized regression. Journal of the American Statistical Association, 2011.

$y = x^{\top}\beta + \varepsilon + \gamma$

Identify Noisy Data in the Dataset

$\operatorname{argmin} L\left(\boldsymbol{\beta},\boldsymbol{\gamma}\right) \coloneqq \left\|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{\gamma}\right\|_{\mathrm{F}}^{2} + \lambda R\left(\boldsymbol{\gamma}\right)$ eta, γ

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020 Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021. Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.

Simplification

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020 Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021. Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.

$$-\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{\gamma} \|_{\mathrm{F}}^{2} + \lambda R(\boldsymbol{\gamma})$$

$$\downarrow \hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{\dagger}\boldsymbol{X}^{\top}(\boldsymbol{Y} - \boldsymbol{\gamma})$$

$$\dagger \boldsymbol{X}^{\top}(\boldsymbol{Y} - \boldsymbol{\gamma}) - \boldsymbol{\gamma} \|_{\mathrm{F}}^{2} + \lambda R(\boldsymbol{\gamma})$$

$$\downarrow \tilde{\boldsymbol{X}} = \boldsymbol{I} - \boldsymbol{H}, \tilde{\boldsymbol{Y}} = \tilde{\boldsymbol{X}}\boldsymbol{Y}$$

$$\tilde{\boldsymbol{X}}\boldsymbol{\gamma} \|_{\mathrm{F}}^{2} + \lambda R(\boldsymbol{\gamma})$$

A linear regression problem!

Solving Gamma in Linear Regression

How to select λ ?

- heuristics rules $\lambda = 2.5\hat{\sigma}$?
- Cross-validation?
- Data adaptive techniques?
- AIC, BIC?

It is hard to select a proper λ .

[1] Friedman, et al. 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent." Journal of Statistical Software.

$$\left\| \tilde{\boldsymbol{X}} \boldsymbol{\gamma} \right\|_{\mathrm{F}}^{2} + \lambda R\left(\boldsymbol{\gamma}
ight)$$

We regard
$$\hat{\gamma} = f(\lambda)$$
.

When
$$\lambda \to \infty$$
, $\hat{\gamma} \to 0$.

With
$$R(\boldsymbol{\gamma}) = \sum_{i=1}^{n} \|\boldsymbol{\gamma}_{i}\|_{2}$$
,
 $\boldsymbol{\gamma}$ vanishes instance by instance.
 $C_{i} = \sup\{\lambda : \|\hat{\boldsymbol{\gamma}}_{i}(\lambda)\| \neq 0\}$
This can be sovled by GLMnet[1

Solving Gamma in Linear Regression

[1] Friedman, et al. 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent." Journal of Statistical Software.

$$\left\| \tilde{\boldsymbol{X}} \boldsymbol{\gamma} \right\|_{\mathrm{F}}^{2} + \lambda R\left(\boldsymbol{\gamma}
ight)$$

We regard
$$\hat{\gamma} = f(\lambda)$$
.

When
$$\lambda \to \infty$$
, $\hat{\gamma} \to 0$.

With
$$R(\boldsymbol{\gamma}) = \sum_{i=1}^{n} \|\boldsymbol{\gamma}_{i}\|_{2}$$
,
 $\boldsymbol{\gamma}$ vanishes instance by instance.
 $C_{i} = \sup\{\lambda : \|\hat{\boldsymbol{\gamma}}_{i}(\lambda)\| \neq 0\}$
This can be sovled by GLMnet[1

Instance Credibility Inference

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020 Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021. Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.

Noise Set Recovery

When will the model identify all the outliers?

Assume ε is i.i.d zero-mean sub-Gaussian noise. We give three conditions:

• (C1: Restricted eigenvalue)

 λ_{\min}

• (C2: Irrepresentability) $\exists \eta \in (0, 1]$, $\left\| \tilde{U}_{S^c}^\top \tilde{U}_S \left(\tilde{U}_S^\top \tilde{U}_S \right) \right\|$

• (C3: Large error)

 $ec{\gamma}_{\min}\coloneqq \min_{i\in i\in I}$

[1]: M. J. Wainwright, Sharp thresholds for high-dimensional and noisy sparsity recovery using I1-constrained quadratic programming. TIT 2009.

$$\left(\tilde{U}_S^{\top} \tilde{U}_S \right) = C_{\min} > 0.$$

$$\left(\tilde{U}_{S}^{\top}\tilde{U}_{S}\right)^{-1}\Big\|_{\infty} \leq 1-\eta.$$

$$\min_{\boldsymbol{\in}S} |\vec{\boldsymbol{\gamma}}^*| > h\left(\lambda, \eta, \tilde{\boldsymbol{U}}, \vec{\boldsymbol{\gamma}}^*\right).$$

A non-asymptotic probabilistic result

Based on these conditions, we could provide the following theorem: **Theorem 1** (Identifiability of ICI). Let $\lambda \geq \frac{2\sigma\sqrt{\mu_{\tilde{U}}}}{\eta}\sqrt{\log cn}$. Then with probability greater than $1 - 2(cn)^{-1}$, the problem has a unique solution $\hat{\gamma}$ satisfies the following properties:

1) If C1 and C2 hold, the wrong-predicted instances indicated by ICI has no false positive error, i.e., $\hat{S} \subseteq S$ and hence $\hat{O} \subseteq O$, and

$$\left\|\hat{ec{\gamma}}_S-ec{\gamma}_S^*
ight\|_\infty$$

2) If C1, C2, and C3 hold, ICI will identify all the correctly-predicted instance, *i.e.*, $\hat{S} = S$ and hence $\hat{O} = O$ (in fact sign $(\hat{\vec{\gamma}}) = \text{sign}(\vec{\gamma}^*)$).

Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021.

$$\leq h\left(\lambda,\eta, ilde{U},ec{\gamma}^*
ight);$$

Identifiability in reality: sub-Gaussian noise

Var

$$\hat{\varepsilon}] \approx 10^{-19}$$

 $\hat{\varepsilon}] \approx 0.99$

大数据学院 School of Data Science

Sparse Learning in Few-Shot Learning

Definition of Few-Shot Learning

Tackle machine learning problem with only limited training data provided.

Few-Shot Learning

Low cost

Binary classification with many labeled data

Few-shot binary classification with unlabeled data

Few-shot binary classification

Motivation

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020 Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021

Framework

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020 Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021

Updating the Unlabeled Set

Sparse Learning in ICI

 $\operatorname{argmin} L\left(\boldsymbol{\beta},\boldsymbol{\gamma}\right) \coloneqq \left\|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{\gamma}\right\|_{\mathrm{F}}^{2} + \lambda R\left(\boldsymbol{\gamma}\right)$ $oldsymbol{eta},oldsymbol{\gamma}$

$$\underset{\boldsymbol{\gamma}}{\operatorname{argmin}} \left\| \tilde{\boldsymbol{Y}} - \tilde{\boldsymbol{X}} \boldsymbol{\gamma} \right\|_{\mathrm{F}}^{2} + \lambda R\left(\boldsymbol{\gamma}\right)$$

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020 Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021

Sparse Learning: Extend to Logistic Regression

$$\operatorname{argmin}_{\substack{\beta,\gamma \\ \beta,\gamma \\ \gamma}} \left\| \boldsymbol{Y} - \boldsymbol{X} \left(\boldsymbol{X}^{\top} \boldsymbol{X} \right)^{\dagger} \boldsymbol{X}^{\top} \left(\boldsymbol{Y} - \gamma \right) - \gamma \right\|_{\mathrm{F}}^{2} + \lambda R \left(\gamma \right)$$

$$\operatorname{argmin}_{\gamma} \left\| \boldsymbol{\tilde{Y}} - \boldsymbol{\tilde{X}} \gamma \right\|_{\mathrm{F}}^{2} + \lambda R \left(\gamma \right)$$

Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021

$$egin{aligned} egin{aligned} egi$$

 ${f arepsilon}_{i,c}$

 学院

Identifiability in Reality: Conditions and Accuracy

Satisfied Assumptions	None	C1	C1 and C2	All
Improved Episodes	0	424	1035	40
Total Episodes	0	793	1164	43
I/T		53.5%	88.9%	93.0%

1) In more than half of the experiments the assumptions C1-C2 are satisfied. Most of them (89.0%) will achieve better performance after self-taught with ICI.

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020 Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021

Identifiability in Reality: Conditions and Accuracy

Satisfied Assumptions	None	C1	C1 and C2	All
Improved Episodes	0	424	1035	40
Total Episodes	0	793	1164	43
I/T		53.5%	88.9%	93.0%

2) When all the assumptions are satisfied, we will get better performance in a high ratio (93.0%).

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020 Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021

Identifiability in Reality: Conditions and Accuracy

Satisfied Assumptions	None	C1	C1 and C2	All
Improved Episodes	0	424	1035	40
Total Episodes	0	793	1164	43
I/T		53.5%	88.9%	93.0%

3) Even if C2-C3 are not satisfied, we still have the chance of improving the performance (53.5%).

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020 Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021

Sparse Learning in Learning with Noisy Labels

Definition of learning with noisy labels

Shogun: Total War - IGN ign.com

nationalgeographic.org

forbes.com

Baal Ascension Materials: What To Farm For G...

Framework

Stage 1: Feature Learning

Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.

Make it scalable to large datasets

Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.

Strategies to help train the network

feature and one-hot encoded vector:

$$\mathcal{L}\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right) = 1_{i \notin O} \left(\mathcal{L}_{\text{CE}}\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right) + \lambda \left\|\boldsymbol{x}_{i}^{\top} W_{\text{fc}}\right\|_{q}\right)$$

• Use CutMix to further exploit the support of noisy data

$$\begin{split} & \tilde{\boldsymbol{x}} = \boldsymbol{M} \odot \boldsymbol{x}_{ ext{clean}} + (1 - \boldsymbol{M}) \odot \boldsymbol{x}_{ ext{noisy}} \\ & \tilde{\boldsymbol{y}} = \lambda \boldsymbol{y}_{ ext{clean}} + (1 - \lambda) \boldsymbol{y}_{ ext{noisy}} \end{split}$$

Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.

• Append a $\ell_q(q < 1)$ penalty to encourage the linear relation between

Label precision performance

Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.

