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Libra (R) and DessiLBI (Python)

Cran R package: Libra

http://cran.r-project.org/web/packages/Libra/

@OAMN- Packacn Lo

¢ C Nittps://cran.r-prosect.ong/webi packages/L htms

Libra: Linearized Bregman Algorithms for Generalized Linsar Models

Efficient procedures for fifting the regularization path for lineas, hinnrm. multinomial, Ising and Potts models with lasso,
group lasso o¢ ealumn lassojonly for multinomial) penalty. The p ses Linearized Bregman Algorithm 1o solve the 0%
regularization path through itcrations. Brgman Inversc Scak: Spm Differcatial Inclosion solver 1salso provided for fincar
model with Easso penalty

Version: 15

Depends: R (=300 nals

Suggesis: lars. MASS. igraph

Published: 2016-02-17 -
Author: Feng Ruan. Jiechao Xiong and Yuan Yao -
Maintainer Jiechao Xiong <xiongjicchao at pku.edu.cns L
License: 2 —
URL: cilarsiv org/abs/1406.7721 S
NeedsCompilation:  yes

SystemRequirements: GNU Scicatific Library (GSL)

CRAN checks: ibra results

Bowmioads

Reference manual Libr pilf
Libra 15

< Libea LS zip, r-oldrel: Libra_1S.zip
.,.M r-oldrel: not available
L51gz

05 X Snow |.u||'.un.| binaries:
05 X Mavericks binaries:  r-release: Libra
Old sources: Libea archive

Yuan Yao Inverse Scale Space Method


http://cran.r-project.org/web/packages/Libra/

Libra (R) and DessiLBI (Python)

Libra (1.6) currently includes

Sparse statistical models:

e linear regression: ISS (differential inclusion), LBI
e logistic regression (binomial, multinomial): LBI

e graphical models (Gaussian, Ising, Potts): LBI
Two types of regularization:

e LASSO: h-norm penalty
e Group LASSO: L — & penalty
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Libra (R) and DessiLBI (Python)

Libra computes regularization paths via Linearized Bregman
Iteration (LBI)

forp = 20 =0 and k € N,

ak —
— 5 _ 2k .\ 1
Zki1 = Zk ; g Vol(xi, 0k) (1a)

i=1

Okt1 =K - P"OXH.H*(ZkH) (1b)
where

e /(x,8) is the loss function to minimize

prox| ., (2) := argmin, (X|u—z|]> + [|ull+)
o oy > 0 is step-size

> 0 while ar||V3EL(x,0)|| < 2

e as simple as ISTA (easy to parallel implementation), yet different limit
dynamics
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Libra (R) and DessiLBI (Python)
©00000000

Libra: Linear/Logistic Regression, Ising graphical models

Linear Regression

Linear Regression:
y=XB+e

(3 is sparse or group sparse, with two types of penalty:
e "ungrouped”: Y. |Bi|
o "grouped”: > /30, _ 57
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Libra (R) and DessiLBI (Python)
0®0000000

Libra: Linear/Logistic Regression, Ising graphical models

Linear Regression Example: Diabetes Data

data(’diabetes’)

attributes (x)

#$dim

# [1] 442 10

#$dimnames [[2]]

# [1] "age" "sex" "bmi" "map" "tc" "1dl" "hdl" "tch" "ltg" "glu"

lassopath = lars(x,y)

isspath = iss(x,y)

1b(x,y,kappa=100,alpha=0.005,family="gaussian",group="ungrouped",
intercept=FALSE ,normalize=FALSE)

1b(x,y,kappa=500,alpha=0.001,family="gaussian",group="ungrouped",
intercept=FALSE ,normalize=FALSE)
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Libra (R) and DessiLBI (Python)
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Libra: Linear/Logistic Regression, Ising graphical models

LBI generates iterative regularization paths
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Libra (R) and DessiLBI (Python)
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Libra: Linear/Logistic Regression, Ising graphical models

Logistic Regression

Logistic Regression:

Ply=1X) _ _ _ e
gm—XB@»P(yfllX)fmf-a(Xﬂ)

(3 is sparse or group sparse, with two types of penalty:

e "ungrouped”: >_.|5i|
o "grouped”: 30 />, B;

0.5

Yuan Yao Inverse Scale Space Method



Libra (R) and DessiLBI (Python)
000080000

Libra: Linear/Logistic Regression, Ising graphical models

Example: Publications of COPSS Award Winners

dataset is provided by Prof. Jiashun Jin @CMU
3248 papers by 3607 authors between 2003 and the first quarter of 2012

from:

the Annals of Statistics, Journal of the American Statistical Association,

Biometrika and Journal of the Royal Statistical Society Series B

a subset of 382 papers by 35 COPSS award winners

e Question: can we model the coauthorship structure to predict the

T

out-of-sample behavior?
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Libra (R) and DessilBI (Python)
[e]e]e]e]e] lele]e]
Libra: Linear/Logistic Regression, Ising graphical models

A logistic regression path with early stopping regularization

Logistic: Peter.Hall ~. -
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Figure: Peter Hall vs. other COPSS award winners in sparse logistic regression [papers
from AoS/JASA/Biometrika/JRSSB, 2003-2012]: true coauthors are merely Tony Cai,
R.J. Carroll, and J. Fan
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Libra (R) and DessiLBI (Python)
000000800

Libra: Linear/Logistic Regression, Ising graphical models

Sparse Ising Model

All models are wrong, but some are useful (George Box):

P(x1,...,Xp) ~ exp Z Hixi + Z Jijxix;
i i

o Ising model: x; = 1 if author i/ appears in a paper, otherwise 0
e H; describes the mean publication rate of author i
e J; describes the interactions between author i and j
Jij > 0: author i and j collaborate more often than others
Jij < 0: author i and j collaborate less frequently than others
sparsity: Jjj = 0 mostly, a model of collaboration network

learned by maximum composite conditional likelihood with LB
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Libra (R) and DessiLBI (Python)
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Libra: Linear/Logistic Regression, Ising graphical models

Early stopping against overfitting in sparse Ising model learning
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a true Ising model of 2-D grid a movie of LB path
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Libra (R) and DessiLBI (Python)
000000008

Libra: Linear/Logistic Regression, Ising graphical models

Application: Sparse Ising Model of COPSS Award Winners

b

Figure: Left: LB path of Ising Model learning; Right: coauthorship network of existing
data. Typically COPSS winners do not like working together; Peter Hall (1951-2016)
is the hub of statisticians, like Erdos for mathematicians
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Libra (R) and DessilBI (Python)
@00
DessiLBI: Deep structurally splitting Linearized Bregman Iteration

DessilBI: Sparse Filters Learned on MNIST

Training path of Spit LBI

1871S

Training path of GO

Random Initialized
Weights

Figure: [see Yanwei Fu's talk] Visualization of solution path and filter patterns in the third convolutional layer (i.e.,

conv.c5) of LetNet-5, trained on MNIST, showing a sparse selection of filters without sacrificing accuracy. From Fu et al. DessiLBI, ICML

2020, https://github.com/DessiLBI2020/DessiLBI.
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Libra (R) and DessiLBI (Python)
oceo

DessiLBI: Deep structurally splitting Linearized Bregman lteration

DessilBI: Non-semantic Features Learned on ImageNet

Random
Initialization

oM
G ‘,{

e

Figure: [see Yanwei Fu’s talk] visualization of the first convolutional layer filters of ResNet-18 trained on
ImageNet-2012, where texture features are more important than colour/shapes. Given the input image and initial weights visualized in the
middle, filter response gradients at 20 (purple), 40 (green), and 60 (black) epochs are visualized. SGD with Momentum (Mom) and

Weight Decay (WD), is compared with SLBI.
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Libra (R) and DessiLBI (Python)
ocoe

DessiLBI: Deep structurally splitting Linearized Bregman Iteration

How does it work?

In the sequel, we shall see a story on statistical model selection consistency
with early stopping:

e The simple iterative algorithm shadows a particular kind of dynamics:
differential inclusions of inverse scale spaces, as special cases of Mirror
Descent, where important features are learned fast

e Simple discretized algorithm, amenable for parallel implementation

e Under nearly the same condition as LASSO, it reaches model selection
consistency with early stopping

e but may incur less bias than LASSO

e Equipped with variable splitting, it weakens the conditions of generalized
LASSO in feature selection
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LASSO vs. Inverse Scale Space

Sparse Linear Regression

Assume that " € RP is sparse and unknown. Consider recovering 8* from n
linear measurements

y = XB" +¢, yeR"
where € ~ N(0, 0?) is noise.
e Basic Sparsity: S :=supp(8*) (s =|S]|) and T be its complement.

Xs (X7) be the columns of X with indices restricted on S (T)
X is n-by-p, with p > n > s.

e Generalized Structural/Transformational Sparsity: v* = DS* is sparse,

where D is a linear transform (wavelet, gradient, etc.), S = supp(y*)

e How to recover 3* (or v*) sparsity pattern (sparsistency) and estimate
values with variations (consistency)?
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LASSO vs. Inverse Scale Space

Best Possible in Basic Setting: The Oracle Estimator

Had God revealed S to us, the oracle estimator was the subset least square
solution (MLE) with 3% = 0 and

%k * 1 -
Bs =85+ L, XS, where T, = 1XJ{ Xs 2)
“Oracle properties”

 Model selection consistency: supp(3*) = S;
o Normality: 5% ~ N (3", ”—:Z;l).

So B* is unbiased, i.e. E[F*] = §*.
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LASSO vs. Inverse Scale Space
@000

LASSO and Bias

Recall LASSO

LASSO: ,
min [|5]ls + 51y — XB3.

optimality condition:

pr _ 17
i EX (y — XBe), (3a)
pr € 0||Bellx, (3b)

where A = 1/t is often used in literature.

e Chen-Donoho-Saunders'1996 (BPDN)
e Tibshirani'1996 (LASSO)
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LASSO vs. Inverse Scale Space

0e00
LASSO and Bias

The Bias of LASSO

LASSO is biased, i.e. E(f) # 8*

e eg. X =1Id, n=p =1, LASSO is soft-thresholding

B\T:{ 0, if7'<1/5*;

Br — 1, otherwise,
=

e e.g. n=100, p =256, X; ~ N(0,1), ¢ ~ N(0,0.1)

True vs LASSO (t hand-tuned,
courtesy of Wotao Yin)
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LASSO vs. Inverse Scale Space
[e]e] lo]

LASSO and Bias

LASSO Estimator is Biased at Path Consistency

Even when the following path consistency (conditions given by Zhao-Yu’06,
Zou'06, Yuan-Lin'07, Wainwright'09, etc.) is reached at 7,:

37, € (0,00) s.t. supp(fs,) =S,

LASSO estimate is biased away from the oracle estimator
A Dk 1 —1 . %
(/37'")5 = /85 - ;Zn,}s81gll(ds)a Tn > 0.

How to remove the bias and return the Oracle Estimator?
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LASSO vs. Inverse Scale Space
oooe

LASSO and Bias

Nonconvex Regularization?

e To reduce bias, non-convex regularization was proposed (Fan-Li's SCAD,
Zhang's MPLUS, Zou's Adaptive LASSO, [; (g < 1), etc.)

mﬂin Zpﬂﬁi\) + i”y - Xﬁ”%-

Ponalties

i

0 5
o

e Vet it is generally hard to locate the global optimizer

o Any other simple scheme?
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LASSO vs. Inverse Scale Space
@0000

Differential Inclusion of Inverse Scale Space

New ldea

e LASSO: .
. 2
min 181l + 5 lly = XBlf2.
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LASSO vs. Inverse Scale Space
@0000

Differential Inclusion of Inverse Scale Space

New ldea

e LASSO:
. t 2
min [|Blls + 5 lly — XBll2-
o KKT optimality condition:

1
= Pt = ;XT(}’ — XBe)t
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LASSO vs. Inverse Scale Space
@0000

Differential Inclusion of Inverse Scale Space

New ldea

e LASSO:
. t 2
—ly — XB||5-
min |81l + 5 ly = XBI3
o KKT optimality condition:
1
= Pt = ;XT(}’ — XBe)t

e Taking derivative (assuming differentiability) w.r.t. t

= o= Xy = Xt + 6), pe € 0l
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LASSO vs. Inverse Scale Space
@0000

Differential Inclusion of Inverse Scale Space

New ldea

LASSO:

. t 2
—|ly — XBll3.
min 18] + 5 lly = X513

KKT optimality condition:

1
= Pt = ;XT(}’ — XBe)t

Taking derivative (assuming differentiability) w.r.t. t

= o= Xy = Xt + 6), pe € 0l

e Assuming sign-consistency in a neighborhood of 7,,
fori €S, pr, (i) = sign(8*(V)) € £1 = p-,(i) =0,

= BTnTn + Br, = B*
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LASSO vs. Inverse Scale Space
@0000

Differential Inclusion of Inverse Scale Space

New ldea

LASSO:

. t 2
min||8|l1 + =—|ly — XB||>.
5'" 18112 2n||y ll2

KKT optimality condition:

1
= Pt = ;XT(}’ — XBe)t

Taking derivative (assuming differentiability) w.r.t. t
. 1 :
= pr= ;XT(Y — X(Bet + Be)), pr € 0||Bellr
e Assuming sign-consistency in a neighborhood of 7,,
fori €S, pr, (i) = sign(8*(V)) € £1 = p-,(i) =0,

= BTnTn + Br, = B*
Equivalently, the blue part removes bias of LASSO automatically

lasso ok 1 —1_. * Hlasso lasso D
BE= = B* — — ¥ tsign(B") = BT, + B = B*(oracle)!
Th
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LASSO vs. Inverse Scale Space
0O®000

Differential Inclusion of Inverse Scale Space

Differential Inclusion: Inverse Scaled Spaces (ISS)

Differential inclusion replacing 67/.3"5507',, + Bfn“" by Bt

1
pe="X"(y = XB), (42)
pt € 0| Bellx- (4b)
starting at t = 0 and p(0) = 5(0) = 0.

e Replace p/t in LASSO KKT by dp/dt

pe_ Ly
tinX (y Xﬂt)

e Burger-Gilboa-Osher-Xu'06 (in image recovery it recovers the objects in an
inverse-scale order as t increases (larger objects appear in 3; first))

Yuan Yao Inverse Scale Space Method



LASSO vs. Inverse Scale Space
[e]e] le]e}

Differential Inclusion of Inverse Scale Space

Examples

e eg. X =1Id, n=p =1, hard-thresholding
5 :{ 0, ifr<1/(F);

5, otherwise,

e the same example shown before (figures by courtesy of Wotao Yin)

o EY 100

True vs LASSO True vs ISS
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LASSO vs. Inverse Scale Space
[e]o]e] o}
Differential Inclusion of Inverse Scale Space

Solution Path: Sequential Restricted Maximum Likelihood Estimate

® p; is piece-wise linear in t,

t — tx

Pt = Py + XT(y = XBy), t€ [t tisn)

where tip1 = sup{t > tx : py, + ==X (y — XBs) € 9||Be. |1}

n
e [3; is piece-wise constant in t: 3 = B, for t € [tk, tky1) and Sy, is the
sequential restricted Maximum Likelihood Estimate by solving
nonnegative least square (Burger et al.’13; Osher et al.’16)

/Btk+1 = argming Hy - XB”%
subject to  (py,)ifi >0 Vi€ Sk, (5)
Bi=0 Vjé€ Tin.

o Note: Sign consistency p; = sign(8*) = 8 = B* the oracle estimator
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Differential Inclusion of Inverse Scale Space

LASSO vs. Inverse Scale Space

[e]e]e]e] }

Example: Regularization

Paths of LASSO vs. ISS

ISS-ungrouped

LASSO
0 2 4 7 10 12 1 2 3 6 9 10 12
S 1 [T | 1 |
— o o
@
= (=3
S o - E o
a
Q - - © ¢ e
. C 5 L
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g 5 © — T B
° --- F~8 [ S
o P, e Tt
o o
§ 3 g
0 I
L o -
T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Ibetal/maxibetal

Solution-Path

Figure: Diabetes data (Efron et al.’04) and regularization paths are different, yet
bearing similarities on the order of parameters being nonzero
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LASSO vs. Inverse Scale Space
@000

Statistical Path Consistency with Early Stopping

Why? A Path Consistency Theory

Our aim is to show that under nearly the same conditions for sign-consistency
of LASSO, there exists points on their paths (3(t), p(t)):>0, which are

® sparse

e sign-consistent (the same sparsity pattern of nonzeros as true signal)

e the oracle estimator which is unbiased, better than the LASSO estimate.

e Early stopping regularization is necessary to prevent overfitting noise!
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LASSO vs. Inverse Scale Space
0@00

Statistical Path Consistency with Early Stopping

Assumptions

(A1) Restricted Strongly Convex: 3y € (0,1],
1.7
EXS Xs >l

(A2) Incoherence/Irrepresentable Condition: 3n € (0, 1),

1 1 1 -1
folxg = || =XF Xs (—XSTX5> <1l-pg
n n n

oo

e "Irrepresentable’ means that one can not represent (regress) column

vectors in X7 by covariates in Xs.

e The incoherence/irrepresentable condition is used independently in
Tropp'04, Yuan-Lin'05, Zhao-Yu'06, Zou'06, Wainwright'09, etc.
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LASSO vs. Inverse Scale Space
[e]e] le]

Statistical Path Consistency with Early Stopping

Understanding the Dynamics

ISS as restricted gradient descent:

pr=—=VL(B) = %XT(Y = XBr), pr € 9Bl

such that
e incoherence condition and strong signals ensure it firstly evolves on index
set S (Oracle Subspace) to reduce the loss
e strongly convex in subspace restricted on index set S = fast decay in loss

e carly stopping after all strong signals are detected, before overfitting noise
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Statistical Path

Path Consistency

Theorem (Osher-Ruan-Xiong-Y.-Yin'2016)
Assume (A1) and (A2). Define an early stopping time

=il
_ n n

= — X;
T 20\ log p <rjn€a-[2(|| J”) ’

and the smallest magnitude 3, = min(|G8]| : i € S). Then

o No-false-positive: for all t < T, the path has no-false-positive with high
probability, supp(B(t)) C S;

o Consistency: moreover if the signal is strong enough such that

Bl > 4o, 80(2+ logs) (maxjer || Xil]) \/@
min = 71/2 o P

there is T < T such that solution path 3(t)) = (% for every t € [7,7].

Note: equivalent to LASSO with \* = 1/7 (Wainwright'09) up to log s.
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LASSO vs. Inverse Scale Space
®000000

Large Scale Algorithm: Linearized Bregman Iteration (LBI)

Large scale algorithm: Linearized Bregman lteration

Damped Dynamics: continuous solution path

. 1. 1
pet o= X"y = XBD), o€l ©)
Linearized Bregman lteration as forward Euler discretization proposed even
earlier than ISS dynamics (Osher-Burger-Goldfarb-Xu-Yin'05,
Yin-Osher-Goldfarb-Darbon'08): for px € 9||B«||1,
1 1 Ak \, T g
pk+1+;dk+1 :/)k+;ﬂk+ TX (v — XBr), (7)
where

e Damping factor: x > 0
e Step size: ax > 0 s.t. as||X.|| <2

e Moreau Decomposition: zx := px + %,Bk & Bk = K - Shrink(zk, 1)
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LASSO vs. Inverse Scale Space
0O@00000

Large Scale Algorithm: Linearized Bregman Iteration (LBI)

Comparison with ISTA

Linearized Bregman (LB) iteration:

Zer1 = 2t — otiT(f»@XShrink(zt7 1)—y)
which is not ISTA:

Ze41 = Shrink(z: — atXT(th —¥),A).
Comparison:

o ISTA:
as t — oo solves LASSO: 1|y — X313 + Al|B|1
parallel run ISTA with {A\«} for LASSO regularization paths

e LB: a single run generates the whole regularization path at same cost of
ISTA-LASSO estimator for a fixed regularization
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LASSO vs. Inverse Scale Space
[e]e] le]e]ele)

Large Scale Algorithm: Linearized Bregman Iteration (LBI)

LBI generates regularization paths

n =200, p =100, S =1{1,...,30}, x; ~ N(0,X,) (o =1/(3p) for i # j and

1 otherwise)

0123
I R

82101 2
-2

TR

-4
-4

00 05 10 15 20 25 30
t t

LB x=64

0123
T T R B R

E
-2

40 1 2
T R

-4 3

T T
00 05 10 15 20 25 30

t t

Figure: As k — 00, LB paths have a limit as piecewise-constant ISS path
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LASSO vs. Inverse Scale Space
0O00e000

Large Scale Algorithm: Linearized Bregman Iteration (LBI)

Accuracy: LB may be less biased than LASSO

e Left shows (the magnitudes of) nonzero entries of 5.
e Middle shows the regularization path of LB.
o Right shows the regularization path of LASSO vs. t = 1/A.
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LASSO vs. Inverse Scale Space
0O000e00
Large Scale Algorithm: Linearized Bregman Iteration (LBI)

Path Consistency in Discrete Setting

Theorem (Osher-Ruan-Xiong-Y.-Yin'2016)

Assume that k is large enough and « is small enough, with ka||Xs Xs|| < 2,

—1
7im EBI0 [ (a1
20 logp \ jeT

8. 420 log p I |X5"||2 + 2sy/log n 2B <
yn n\/f7

then all the results for ISS can be extended to the discrete algorithm.

Note: it recovers the previous theorem as xk — oo and a — 0, so LB can be
less biased than LASSO.
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LASSO vs. Inverse Scale Space
0000080

Large Scale Algorithm: Linearized Bregman Iteration (LBI)

General Loss and Regularizer

. K 4
== ;vne(xf,et,m) (82)
.6 1o
pet == ;Vef(xl',é’r,m) (8b)
pr € 0|10« (8¢)

where

e /(x;,0) is a loss function: negative logarithmic likelihood, non-convex loss
(neural networks), etc.

o ||6:]|« is the Minkowski-functional (gauge) of dictionary convex hulls:
10l :=inf{A >0:0 € AK}, K isa symmetric convex hull of {a;}

it can be generalized to non-convex regularizers
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LASSO vs. Inverse Scale Space
000000
Large Scale Algorithm: Linearized Bregman Iteration (LBI)

More reference on generalizations

Logistic Regression: loss — conditional likelihood, regularizer — |
(Shi-Yin-Osher-Saijda’10,Huang-Yao'18)

Graphical Models (Gaussian/Ising/Potts Model): loss — likelihood,
composite conditional likelihood, regularizer — /1 and group h
(Huang-Yao'18)

Fused LASSO/TV: split Bregman with composite / loss and /1 gauge
(Osher-Burger-Goldfarb-Xu-Yin'06, Burger-Gilboa-Osher-Xu'06,
Yin-Osher-Goldfarb-Darbon’08, Huang-Sun-Xiong-Yao'16)

Matrix Completion/Regression: gauge — the matrix nuclear norm
(Cai-Candés-Shen'10)
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Variable Splitting: Split LBI

Structural or Transformational Sparsity

Structural /Transformational Sparse Regression:

y=XB" +e (9a)
v*= DB, (9b)

where
S=supp(v’), s:=[S|<p.
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Variable Splitting: Split LBI

Split LBI vs. Generalized LASSO

o Generalized LASSO (genlasso):
argmin (= [ly — XB|2 + A|DB| (10)
M\ 2n VY 2 Pl
e Split LBI: Loss that splits prediction vs. sparsity control

1 1
() = 5. lly = XBll+ 5 Iy = DAI (v>0). (1)

Algorithm [Huang-Sun-Xiong-Y. 2016] :

Br+1 = Bk — £V gl( Bk, k), (12a)
Ziyr = 2k — aV A l(Br, Vi), (12b)
Vi1 = K - prox. |, (Zk+1), (12¢)
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Variable Splitting: Split LBI

ralized LASSO paths

genlasso
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Variable Splitting: Split LBI

Split LBl may beat Generalized LASSO in Model Selection

genlasso Split LBI genlasso Split LBI
v=1 v=>5 v =10 v=1 v=5 v =10
.9426 .9845 .9969 .9982 .9705 .9955 19996 19998

(.0300)  (.0185)  (.0065)  (.0043) (.0212)  (.0056)  (.0014)  (.0009)

Example: n = p =50, X € R"? with X; ~ N(0, ), e ~ N(0, I)
(Left) D =1 (LASSO vs. Split LBI)

(Right) 1-D fused (generalized) LASSO vs. Split LBI

In terms of Area Under the ROC Curve (AUC), Split LBI has less false

discoveries than genlasso

Why? Split LBI may need weaker irrepresentable conditions than
generalized LASSO...

Yuan Yao Inverse Scale Space Method



Variable Splitting: Split LBI
[ JoJelele}

A Weaker Irrepresentable/Incoherence Condition

Structural Sparsity Assumptions

Define () := (I — D(vX*X +D"D)'D")/v.

e Assumption 1: Restricted Strong Convexity (RSC).
Tss(v) = Al (13)
e Assumption 2: Irrepresentable Condition (IRR).

IRR(v) = [|[Zse,s(v) - Ts 5(¥)]lo <1—1. (14)

v — 0: RSC and IRR above reduce to the neccessary and sufficient for
consistency of genlasso (Vaiter'13,LeeSunTay'13).

v # 0: by allowing variable splitting in proximity, IRR above can be weaker
than literature, bringing better variable selection consistency than

genlasso (observed before)!
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Variable Splitting: Split LBI
[¢] le]e]e}
A Weaker Irrepresentable/Incoherence Condition

Split LB improves Irrepresentable Condition
(Huang-Sun-Xiong-Y.'16)

Theorem (Huang-Sun-Xiong-Y.'2016)

(] ICO Z ICl.
e IRR(v) = ICy (v — 0).
e IRR(v) = C (v — o0) with C = 0 <= ker(X) C ker(Ds).
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Variable Splitting: Split LBI
[e]e] le]e}

A Weaker Irrepresentable/Incoherence Condition

Remark: Identifiable Conditions (IC)

e Let the columns of W form an orthogonal basis of ker(Dsc).
T t
QS = (D}c) (X*XW (WTX*XW) w’ — /) DI,  (15)
1Co := HQSHM, 1= _min ‘stign(Ds,B*) - un. (16)

The sign consistency of genlasso has been proved, under IC; < 1 [Vaiter
et al. 2013].

The sign consistency of Split LBl is proved under IRR(v) < 1
[Huang-Sun-Xiong-Y.’2016].

As IRR(v) < IC; when v grows, our IRR is easier to meet.
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Variable Splitting: Split LBI
[e]o]e] le}

A Weaker Irrepresentable/Incoherence Condition

Consistency

Theorem (Huang-Sun-Xiong-Y.'2016)

Under RSC and IRR, with large k and small §, there exists K such that with
high probability, the following properties hold.
o No-false-positive property: vi (k < K) has no false-positive, i.e.
supp(vk) € S = supp(7”).
e Sign consistency of yi: If vy, := min(|y/| : j € S) (the minimal signal) is
not weak, then supp(yx) = supp(7”).
e (5 consistency of yi: ||[vk —v*|l, < Ciy/slogm/n.
o (5 ‘“consistency” of Bi: ||Bk — B”|, < Coy/slogm/n+ Gav.

Issues due to variable splitting (despite benefit on IRR):

e Dfy does not follow the sparsity pattern of v* = DS*.
e By incurs an additional loss Gzv (v ~ /s log m/n minimax optimal).
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Variable Splitting: Split LBI
[e]e]e]e] }
A Weaker Irrepresentable/Incoherence Condition

Consistency

Theorem (Huang-Sun-Xiong-Y.'2016)

Define
i == Projiu(ogg) (B) (S = supp()) (17)

Under RSC and IRR, with large k and small §, there exists K such that with
high probability, the following properties hold, if v, is not weak.

e Sign consistency of Dfk: supp(Dfk) = supp(DS*).
e (5 consistency of f: HBK —B*|| < Gi/slogm/n.
2
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Variable Splitting: Split LBI
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Applications: Alzheimer's Disease, Deep Learning, and Ranking

Application: Partial Order of Basketball Teams

Baseketball (genlasso)

Coor

Basektbal (Spiitted LBI)

Iél

.q*
<0

S = | RO | e RS

Figure: Partial order ranking for basketball teams. Top left shows {3,} (t = 1/)\) by
genlasso and Bk (t = kar) by Split LBI. Top right shows the same grouping result
just passing t5. Bottom is the FIBA ranking of all teams.
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Variable Splitting: Split LBI
(o] lo}

Applications: Alzheimer's Disease, Deep Learning, and Ranking

Application: Sparse Neural Nets in Early Stopping (Lottery Tickets)

Y6616 pruning

(a) (b)

V6 16lLasso) pring Pruning

+
LA

i Pgeereesy

(d)

Figure: [see Yanwei Fu's talk] SplitLBI with early stopping finds sparse subnets whose test accuracies (stars) after retrain
are comparable or even better than the baselines (Network Slimming, Soft-Filter Pruning, Scratch-B, Scratch-E, and “Rethinking-Lottery”
as reported in Rethink the Value of Pruning. Sparse filters of VGG-16 and ResNet-56 are show in (a) and (b), while sparse weights of
VGG-16 and ResNet-50 are shown in (c) and (d).

Yuan Yao Inverse Scale Space Method



Variable Splitting: Split LBI
ooe

Applications: Alzheimer's Disease, Deep Learning, and Ranking

Application: Alzheimer’s Disease Detection

Accuracy
*

( t dy b i i

Time logt B t=ts t=t5

Figure: [Sun-Hu-Y.-Wang'17] A split of prediction (8) vs. interpretability (B) B
corresponds to the degenerate voxels interpretable for AD, while 8 additionally
leverages the procedure bias to improve the prediction (c.f. Xinwei Sun talk).
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Variable Splitting: Split LBI
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Data Adaptive Early Stopping Rule: Split Knockoffs

Controlling the False Discovery Rates via Knockoffs

e The early stopping rule 7 in theory (for power) is unknown in applications;

o Knockoff (Barber-Candés (2015)) gives a data adaptive early stopping rule
with FDR control:

#false discoveris

FDR =E 1V #discoveries

o The method makes a fake Knockoff feature X as the control group:
XTX =X"X, XTX = X" X — diag(s),

where s is some proper non-negative vector. The Knockoff features mimic
the original feature X, but decoupled with the original feature.
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Variable Splitting: Split LBI
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Data Adaptive Early Stopping Rule: Split Knockoffs

Knockoff Methods

Knockoff is extended to:
Group sparse and multi-task regression model (Dai-Barber, ICML 2016).
Huber's robust regression with LBI (Xu et al. ICML 2016).
High dimensional setting (Barber-Candes 2019).
B Model-X Knockoff for random design (Candes et al. 2016).
Deep Knockoff for nonparametric random designs (Romano et al. 2019).

@ Split Knockoffs for structural /transformational sparsity (Cao-Sun-Y. 2022).
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Summary

Summary

e The limit of Linearized Bregman iteration follows differential inclusion of
inverse scale space, where significant features emerge earlier on solution
paths

o It renders the unbiased Oracle Estimator under sign-consistency

e Sign consistency under nearly the same condition as LASSO
Restricted Strongly Convex + Irrepresentable Condition

e Split extension: sign consistency under a weaker condition than
generalized LASSO

under a provably weaker Irrepresentable Condition

e Early stopping regularization is exploited against overfitting noise

A Renaissance of Boosting as restricted gradient descent ...
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Summary

Some Reference
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2016
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Handbook of Big Data Analytics, Eds. by Wolfgang Karl Hardle, Henry Horng-Shing Lu, and Xiaotong Shen, Springer, 2017.
https://arxiv.org/abs/1604.05910
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Neural Networks via Differential Inclusion Paths. /CML 2020, arXiv:2007.02010.

® Yanwei Fu, Chen Liu, Donghao Li, Zuyuan Zhong, Xinwei Sun, Jinshan Zeng, and Yuan Yao. Exploring Structural Sparsity of
Deep Networks via Inverse Scale Spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022.

® Yang Cao, Xinwei Sun, Yuan Yao. “Controlling the False Discovery Rate in Structural Sparsity: Split Knockoffs”.
arXiv:2103.16159.

® R package: http://cran.r-project.org/veb/packages/Libra/index.html

® Pytorch package for deep learning: https://github.com/DessilLBI2020/DessilBI
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